RESUMO
Acoustic waves can be used for wireless telemetry as an alternative to situations where electrical or optical penetrators are unsuitable. However, the response of the ultrasonic transducer can be greatly affected by temperature variations, mechanical deformations, misalignment between transducers, and multiple layers in the propagation zone. Therefore, this work sought to quantify such influences on communication between ultrasonic transducers. The experimental measurements were performed at the frequency where power transfer is maximized. Moreover, there were four experimental models, each with its own performed setup. The ultrasonic transducers are attached to both sides of a 6 mm thick stainless-steel plate for configuring just one barrier. Multiple layers of transducers are attached to the outer side of two plates immersed in an acoustic fluid with a 100 mm thick barrier. In both cases, the S21 parameter was used to quantify the influence of the physical barrier because it correlates with the power flow between ports that return after a given excitation. The results showed that when a maximum deformation of 1250 µm/m was applied, the amplitude of the S21 parameter varied around +0.7 dB. Furthermore, increasing the temperature from 30 to 100 °C slightly affected the S21 (+0.8 dB), but the signal decayed quickly for temperatures beyond 100 °C. Additionally, the ultrasonic communication with a multiple layer was found to occur under misalignment with an intersection area of up to 40%. None of the factors evaluated resulted in insufficient power transfer, except for a large misalignment between the transducers. Such results indicate that this type of communication can be a robust alternative, with a minimum alignment of 40% between transducers and electrical penetrators.
RESUMO
In this work, we establish a fractional-order neural field mathematical model with Caputo's fractional derivative temporal order α considering 0 < α < 2, to analyze the effect of fractional-order on cortical wave features observed preceding seizure termination. The importance of this incorporation relies on the theoretical framework established by fractional-order derivatives in which memory and hereditary properties of a system are considered. Employing Mittag-Leffler functions, we first obtain approximate fractional-order solutions that provide information about the initial wave dynamics in a fractional-order frame. We then consider the Adomian decomposition method to approximate pulse solutions in a wider range of orders and longer times. The former approach establishes a direct way to investigate the initial relationships between fractional-order and wave features, such as wave speed and wave width. In contrast, the latter approach displays wave propagation dynamics in different fractional orders for longer times. Using the previous two approaches, we establish approximate wave solutions with characteristics consistent with in vivo cortical waves preceding seizure termination. In our analysis, we find consistent differences in the initial effect of the fractional-order on the features of wave speed and wave width, depending on whether α <1 or α>1. Both cases can model the shape of cortical wave propagation for different fractional-orders at the cost of modifying the wave speed. Our results also show that the effect of fractional-order on wave width depends on the synaptic threshold and the synaptic connectivity extent. Fractional-order derivatives have been interpreted as the memory trace of the system. This property and the results of our analysis suggest that fractional-order derivatives and neuronal collective memory modify cortical wave features.
RESUMO
The goal of this work is to assess the impact of vascular anatomy definition degree in the predictions of blood flow models of the arterial network. To this end, results obtained with an anatomically detailed network containing over 2000 vessels are systematically compared with those obtained with an anatomically simplified network containing the main 86 vessels, the latter being a truncated version of the former one. The comparison is performed quantitatively and qualitatively in terms of pressure and flow rate waveforms, wave intensity analysis and impedance analysis. Comparisons are performed under physiological conditions and for the case of common carotid artery occlusion. Mechanisms of blood flow delivery to the brain, as well as different blood flow steal phenomena, are unveiled in light of model predictions. Results show that detailed and simplified models are in reasonable agreement regarding the hemodynamics in larger vessels and in healthy scenarios. The anatomically detailed arterial network features improved predictive capabilities at peripheral vessels. Moreover, discrepancies between models are substantially accentuated in the case of anatomical variations or abnormal hemodynamic conditions. We conclude that physiologically meaningful agreement between models is obtained for normal hemodynamic conditions. This agreement rapidly deteriorates for abnormal blood flow conditions such as those caused by total arterial occlusion. Differences are even larger when modifications of the vascular anatomy are considered. This rational comparison allows us to gain insight into the need for anatomically detailed arterial networks when addressing complex hemodynamic interactions.
Assuntos
Artérias/anatomia & histologia , Artérias/fisiologia , Modelos Cardiovasculares , Arteriopatias Oclusivas/fisiopatologia , Círculo Arterial do Cérebro/fisiologia , Módulo de Elasticidade , Hemodinâmica/fisiologia , Humanos , Pressão , Análise de Onda de Pulso , Fluxo Sanguíneo RegionalRESUMO
We experimentally study the transport properties of dipolar and fundamental modes on one dimensional (1D) coupled waveguide arrays. By carefully modulating a wide optical beam, we are able to effectively excite dipolar or fundamental modes to study discrete diffraction (single-site excitation) and gaussian beam propagation (multi-site excitation plus a phase gradient). We observe that dipolar modes experience a larger spreading area due to an effective larger coupling constant, which is found to be more than two times larger than the one for fundamental modes. Additionally, we study the effect of non-diagonal disorder and find that while fundamental modes are already trapped on a weakly disorder array, dipoles are still able to propagate across the system.
RESUMO
Haemodynamic simulations using one-dimensional (1-D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. We propose a novel linear 1-D dynamical theory of blood flow in networks of flexible vessels that is based on a generalized Darcy's model and for which a full analytical solution exists in frequency domain. We assess the accuracy of this formulation in a series of benchmark test cases for which computational 1-D and 3-D solutions are available. Accordingly, we calculate blood flow and pressure waves, and velocity profiles in the human common carotid artery, upper thoracic aorta, aortic bifurcation, and a 20-artery model of the aorta and its larger branches. Our analytical solution is in good agreement with the available solutions and reproduces the main features of pulse waveforms in networks of large arteries under normal physiological conditions. Our model reduces computational time and provides a new approach for studying arterial pulse wave mechanics; e.g., the analyticity of our model allows for a direct identification of the role played by physical properties of the cardiovascular system on the pressure waves.
Assuntos
Aorta Torácica/fisiologia , Artérias Carótidas/fisiologia , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , HumanosRESUMO
Palmeras (Gorgona National Park) is one of the most important sites for sea turtle nesting in South and Central America. Because of the morphological processes affecting the beach, the turtle nests are increasingly exposed to the impact of waves and tides, threatening conservation. A study was made to determine the hydrodynamical processes of the zone adjacent to Playa Palmeras, which affects directly the morphodynamical behavior of the beach and thus the preservation of the nests. Field measurements and numerical modeling were used to obtain the general circulation patterns and thermohaline structure behavior in the area in order to determine the spatial and temporal variability of waves and its effects on the beach. A marked seasonality was found, both in the waves and the currents, influenced mainly by the meridional displacement of the ITCZ (Inter-Tropical Convergence Zone) and an interannual variability of the waves, associated with ENSO (El Niño Southern Oscillation). The flooding levels of the beach were determined and flooding probability maps were made, where safer sites to locate the turtle nests could be identified. These maps serve the officials responsible of monitoring the turtles as a tool to take decisions on moving the nests, since they have flood risk information for any point on the beach. The results show that the middle zone north of the beach is the one with the lowest risk of flooding, therefore the most appropriate zone to relocate nests that are in high risk areas. Rev. Biol. Trop. 62 (Suppl. 1): 133-147. Epub 2014 February 01.
Playa Palmeras (En el Parque Nacional Isla Gorgona) es uno de los sitios más importantes para la anidación de tortugas marinas en América del Sur y Centroamérica. Debido a procesos morfológicos que afectan la playa, los nidos de las tortugas se han visto cada vez más expuestos al impacto del oleaje y la marea, poniendo en riesgo la conservación de éstas especies. Se llevó a cabo un estudio para conocer los procesos hidrodinámicos de la zona costera en Playa Palmeras, de los cuales depende el comportamiento morfodinámico de la playa y la preservación de los nidos. Se usó modelación numérica y mediciones en campo para conocer la variabilidad espacio-temporal del oleaje y obtener los patrones generales de circulación y la estructura termohalina de la zona. Se encontró un marcado ciclo anual, tanto en el oleaje como en las corrientes, influenciado por la Zona de Convergencia Intertropical (ZCIT) y una variabilidad interanual del oleaje, asociada a El Niño Oscilación del Sur (ENSO). Se estimó la cota de inundación de la playa y se crearon mapas de probabilidad de inundación, identificando los sitios potencialmente más seguros para la anidación. Los resultados muestran que hacia el norte de la playa está la zona de menor riesgo.