Your browser doesn't support javascript.
loading
Mechanical Strain, Temperature, and Misalignment Effects on Data Communication between Piezoceramic Ultrasonic Transducers.
Camerini, Isabel Giron; de Souza, Luis Paulo Brasil; Gouvea, Paula Medeiros Proença; Braga, Arthur Martins Barbosa.
Afiliação
  • Camerini IG; Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil.
  • de Souza LPB; Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil.
  • Gouvea PMP; Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil.
  • Braga AMB; Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil.
Sensors (Basel) ; 24(17)2024 Aug 28.
Article em En | MEDLINE | ID: mdl-39275471
ABSTRACT
Acoustic waves can be used for wireless telemetry as an alternative to situations where electrical or optical penetrators are unsuitable. However, the response of the ultrasonic transducer can be greatly affected by temperature variations, mechanical deformations, misalignment between transducers, and multiple layers in the propagation zone. Therefore, this work sought to quantify such influences on communication between ultrasonic transducers. The experimental measurements were performed at the frequency where power transfer is maximized. Moreover, there were four experimental models, each with its own performed setup. The ultrasonic transducers are attached to both sides of a 6 mm thick stainless-steel plate for configuring just one barrier. Multiple layers of transducers are attached to the outer side of two plates immersed in an acoustic fluid with a 100 mm thick barrier. In both cases, the S21 parameter was used to quantify the influence of the physical barrier because it correlates with the power flow between ports that return after a given excitation. The results showed that when a maximum deformation of 1250 µm/m was applied, the amplitude of the S21 parameter varied around +0.7 dB. Furthermore, increasing the temperature from 30 to 100 °C slightly affected the S21 (+0.8 dB), but the signal decayed quickly for temperatures beyond 100 °C. Additionally, the ultrasonic communication with a multiple layer was found to occur under misalignment with an intersection area of up to 40%. None of the factors evaluated resulted in insufficient power transfer, except for a large misalignment between the transducers. Such results indicate that this type of communication can be a robust alternative, with a minimum alignment of 40% between transducers and electrical penetrators.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça