Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 242: 112702, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37018912

RESUMO

The presence of melanopsin (OPN4) has been shown in cultured murine melanocytes and was associated with ultraviolet A radiation (UVA) reception. Here we demonstrated the protective role of OPN4 in skin physiology and the increased UVA-induced damage in its absence. Histological analysis showed a thicker dermis and thinner hypodermal white adipose tissue layer in Opn4-/- (KO) mice than in wild-type (WT) animals. Proteomics analyses revealed molecular signatures associated with proteolysis, remodeling chromatin, DNA damage response (DDR), immune response, and oxidative stress coupled with antioxidant responses in the skin of Opn4 KO mice compared to WT. Skin protein variants were found in Opn4 KO mice and Opn2, Opn3, and Opn5 gene expressions were increased in the genotype. We investigated each genotype response to UVA stimulus (100 kJ/m2). We found an increase of Opn4 gene expression following stimulus on the skin of WT mice suggesting melanopsin as a UVA sensor. Proteomics findings suggest that UVA decreases DDR pathways associated with ROS accumulation and lipid peroxidation in the skin of Opn4 KO mice. Relative changes in methylation (H3-K79) and acetylation sites of histone between genotypes and differentially modulated by UVA stimulus were also observed. We also identified alterations of molecular traits of the central hypothalamus-pituitary- adrenal (HPA) and the skin HPA-like axes in the absence of OPN4. Higher skin corticosterone levels were detected in UVA-stimulated Opn4 KO compared to irradiated WT mice. Taken altogether, functional proteomics associated with gene expression experiments allowed a high-throughput evaluation that suggests an important protective role of OPN4 in regulating skin physiology in the presence and absence of UVA radiation.


Assuntos
Opsinas de Bastonetes , Pele , Animais , Camundongos , Homeostase , Melanócitos/metabolismo , Proteínas de Membrana/metabolismo , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
2.
Photochem Photobiol Sci ; 21(8): 1459-1472, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35551642

RESUMO

Pseudomonas aeruginosa is an extremely versatile microorganism that survives in a wide variety of niches. It is capable to respond rapidly to changes in the environment by producing secondary metabolites and virulence factors, including alginate. Alginate is an extracellular polysaccharide that protects the bacteria from antibiotics and oxidative agents, and enhances cell adhesion to solid surfaces in the process of biofilm formation. In the present study, we analyzed the role of alginate in the response of P. aeruginosa to lethal doses of ultraviolet-A (UVA) radiation, the major fraction of solar UV radiation reaching the Earth's surface. We also studied the role of alginate in the context of the adaptive responses generated when P. aeruginosa is exposed to sublethal doses of UVA radiation. The survival studies demonstrated that alginate has a key role in the resistance of P. aeruginosa to the oxidative stress generated by lethal UVA doses, both in planktonic cells and in static biofilms. In addition, the presence of alginate proved to be essential in the occurrence of adaptive responses such as induction of biofilm formation and cross-protection against hydrogen peroxide and sodium hypochlorite, both generated by exposure to low UVA doses. Finally, we demonstrated that the increase of biofilm formation is accompanied by an increase in alginate concentration in the biofilm matrix, possibly through the ppGpp-dependent induction of genes related to alginate regulation (algR and algU) and biosynthesis (algD operon). Given the importance of alginate in biofilm formation and its protective roles, better understanding of the mechanisms associated to its functions and synthesis is relevant, given the normal exposure of P. aeruginosa to UVA radiation and other types of oxidative stresses.


Assuntos
Plâncton , Pseudomonas aeruginosa , Alginatos/metabolismo , Alginatos/farmacologia , Biofilmes , Peróxido de Hidrogênio/farmacologia , Pseudomonas aeruginosa/fisiologia
3.
São Paulo; s.n; s.n; 2022. 172 p. tab, graf.
Tese em Inglês | LILACS | ID: biblio-1378625

RESUMO

The solar ultraviolet (UV) radiation that reaches the Earth is composed of 95% of UVA (320 to 400 nm) and 5% of UVB (280 to 320 nm) radiation. UVB is carcinogenic, generating potentially mutagenic DNA lesions. The solar UVA radiation also causes DNA damage, but this fact does not fully account for its biological impact. UVA is absorbed by non-DNA cellular chromophores, generating reactive oxygen species such as singlet oxygen. Knowing the proteome mediates stress responses in cells, here we investigated the cellular effects of a non-cytotoxic dose of UVA radiation, equivalent to about 20 minutes of midday sun exposure, on the proteome of human keratinocytes. Using a combination of mass spectrometry-based proteomics, bioinformatics, and conventional biochemical assays, we analyzed two aspects of UVA-induced stress: spatial remodeling of the proteome in subcellular compartments 30 minutes after stress and long-term changes in protein levels and secretion (24 hours and 7 days postirradiation). In the first part of this thesis, we quantified and assigned subcellular localization for over 3000 proteins, of which about 600 potentially redistribute upon UVA exposure. Protein redistributions were accompanied by redox modulations, mitochondrial fragmentation and DNA damage. In the second part of the work, our results showed that primary human keratinocytes enter senescence upon exposure to a single dose of UVA, mounting antioxidant and inflammatory responses. Cells under UVA-induced senescence further elicit paracrine responses in neighboring premalignant HaCaT epithelial cells via inflammatory mediators. Altogether, these results reiterate the role of UVA radiation as a potent metabolic stressor in the skin


A radiação ultravioleta (UV) solar que atinge a superfície terrestre é composta por 95% de radiação UVA (320 a 400 nm) e 5% de radiação UVB (280 a 320 nm). A radiação UVB é carcinogênica e gera lesões potencialmente mutagênicas no DNA. A radiação UVA solar também gera danos no DNA, mas a genotoxicidade dessa radiação não explica inteiramente o seu impacto biológico. Atualmente, sabe-se que a radiação UVA é absorvida por cromóforos celulares, gerando espécies reativas de oxigênio, como o oxigênio singlete. Sabendo que o proteoma é um mediador de respostas ao estresse celular, nós investigamos os efeitos celulares de uma dose não-citotóxica de radiação UVA, equivalente a cerca de 20 minutos de exposição ao sol, no proteoma de queratinócitos humanos. Utilizando espectrometria de massas, bioinformática e ensaios bioquímicos convencionais, nós analisamos dois aspectos do estresse induzido por radiação UVA: o remodelamento espacial do proteoma 30 minutos depois do estresse e alterações nos níveis e na secreção de proteínas no longo prazo (24 horas e 7 dias depois da irradiação). Na primeira parte desta tese, nós quantificamos e atribuímos classificações de localização subcelular a mais de 3000 proteínas. Dentre essas proteínas, 600 tem potencialmente a sua distribuição subcelular alterada em resposta à radiação. As redistribuições subcelulares são acompanhadas de modulações redox, fragmentação mitocondrial e danos no DNA. Na segunda parte da tese, os nossos resultados mostraram que queratinócitos humanos primários entram em senescência sob exposição a uma única dose de radiação UVA, montando respostas antioxidantes e pró-inflamatórias. Células sob senescência induzida por UVA, por sua vez, desencadeiam respostas parácrinas em queratinócitos pré-tumorais (células HaCaT) por meio de mediadores inflamatórios. Em conjunto, esses resultados reiteram o papel da radiação UVA como um potente estressor metabólico em células da pele


Assuntos
Pele , Raios Ultravioleta/efeitos adversos , Queratinócitos/química , Proteômica/classificação , Doses de Radiação , Espectrometria de Massas/métodos , DNA , Células Epiteliais/classificação , Genotoxicidade/efeitos adversos , Células HaCaT/classificação , Antioxidantes/efeitos adversos
4.
J Photochem Photobiol B ; 221: 112255, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34271412

RESUMO

Skin is the largest body organ and can be affected by several factors, such as ultraviolet (UV) radiation. UV radiation is subdivided in UVA, UVB and UVC according to the radiation wavelength. UVC radiation does not cross the ozone layer; UVB cause DNA damage and is closely related to carcinogenesis; UVA radiation penetrates deeply into the skin, reaching epidermis and dermis and is considered the main promoter of skin aging, known as photoaging. In order to understand photoaging mechanisms and propose efficient therapies, several photoaging study models have been developed, each with benefits and limitations, but most of them use very high doses of UVA radiation, which is not compatible with our daily sun exposure. The objective of this work was to develop a human ex vivo photoaging model induced by UVA exposure compatible to a summer in Brazil. For this, human skin fragments were obtained from healthy donors who underwent otoplasty surgery and skin explants were prepared and placed in plates, with the epidermis facing upwards. Skin explants were exposed to UVA at 16 J/cm2 carried out by protocols of 2 or 4 exposures. Results showed an increase of oxidative damage, inflammatory cells, collagenolytic and elastolytic MMPs expression as well as a decrease of elastin expression, suggesting that the experimental model based on skin explants is able to evaluate UVA-induced aging in human skin.


Assuntos
Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta , Brasil , Sobrevivência Celular/efeitos da radiação , Humanos , Estresse Oxidativo/efeitos da radiação , Estações do Ano , Pele/citologia , Pele/patologia , Pele/efeitos da radiação
5.
Environ Sci Pollut Res Int ; 27(18): 22214-22224, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32124285

RESUMO

Conventional wastewater treatments are not efficient in removing parabens, which may thus end up in surface waters, posing a threat to aquatic biota and human health. As an alternative treatment, persulfate (PS)-driven advanced oxidation technologies have gained growing attention for removing these pollutants. In this study, the degradation of propylparaben (PrP) by UVA- and zero-valent iron (ZVI)-activated persulfate was investigated. The effects of initial PS concentration ([PS]0) and irradiance or ZVI concentration were explored using the Doehlert experimental design. For the UVA-activated system, the specific PrP degradation rate (k) and percent removal were consistently higher for increasing [PS]0 and irradiance, varying in the ranges 0.0053-0.0192 min-1 and 37.9-77.3%, respectively. In contrast, extremely fast PrP degradation was achieved through the ZVI/PS process (0.3304 < k < 0.9212 min-1), with removal percentages above 97.5%; in this case, paraben degradation was hindered for a ZVI dosage beyond 40 mg L-1. Regarding toxicity, ECOSAR predictions suggest that the degradation products elucidated by LC-MS/MS are less toxic than PrP toward fish, daphnid, and green algae. In addition, both processes showed to be strongly dependent on the water matrix, being ZVI/PS more impacted for a MBR effluent, although its performance was much better than that exhibited by the UVA-driven process (t1/2 of 65.4 and 276.1 min, respectively).


Assuntos
Ferro , Poluentes Químicos da Água , Cromatografia Líquida , Oxirredução , Parabenos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA