Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794441

RESUMO

Agave tequilana Weber var. Blue is used as the primary raw material in tequila production due to its fructans (inulin) content. This study evaluates the formulation of a plant-growth-promoting bacteria (PGPB) consortium (Pseudomonas sp. and Shimwellia sp.) to increase sugars in A. tequilana under field conditions. A total of three doses were tested: low (5 L ha-1), medium (10 L ha-1), and high (15 L ha-1), with a cellular density of 1 × 108 CFU mL-1 and one control treatment (without application). Total reducing sugars (TRS), inulin, sucrose, glucose, fructose, and plant growth were measured in agave plants aged 4-5 years at 0 (T0), 3 (T3), 6 (T6), and 12 (T12) months. Yield was recorded at T12. The TRS increased by 3%, and inulin by 5.3% in the high-dose treatment compared to the control at T12. Additionally, a low content of sucrose, glucose, and fructose (approximately 1%) was detected. At T12, the weight of agave heads increased by 31.2% in the medium dose and 22.3% in the high dose compared to the control. The high dose provided a higher inulin content. The A. tequilana plants were five years old and exhibited growth comparable to the standards for 6-7-year-old plants. This study demonstrates a sustainable strategy for tequila production, optimizing the use of natural resources and enhancing industry performance through increased sugar content and yield.

2.
Foods ; 12(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37444343

RESUMO

The present research shows a robust isotopic ratio characterization of Carbon-13 (δ13CVPDB) in congeneric compounds such as methanol, n-propanol, isoamyl alcohol, ethyl lactate, ethyl acetate, ethanol, and acetaldehyde in representative samples (n = 69) of Tequila 100% agave silver class (TSC), employing gas chromatography/combustion/isotope-ratio mass spectrometry (GC/C/IRMS). From the information obtained, the construction of a radial plot attributable to the isotopic fingerprint of TSC was achieved. With this information, a diagnostic test was designed to determine the authenticity of TSC, comparing alcoholic beverages from other agave species as non-authentic samples. The sensitivity of the test was 94.2%; the specificity was 83.3%. Additionally, non-authentic samples were analyzed that meet all the criteria established in the regulations. The results obtained show that the GC/C/IRMS analytical technique and designed diagnostic test are useful as auxiliary parameters to determine the authenticity of the beverage, thus managing to determine the adulteration or falsification of the product.

3.
Ann Bot ; 132(4): 819-833, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-37279950

RESUMO

BACKGROUND AND SCOPE: Crassulacean acid metabolism (CAM) is an intriguing physiological adaptation in plants that are widespread throughout many ecosystems. Despite the relatively recent mechanistic understanding of CAM in plant physiology, evidence from historical records suggests that ancient cultures in the Americas also recognized the value of CAM plants. Agave species, in particular, have a rich cultural legacy that provides a foundation for commercially valued products. Here, we review that legacy and potential relationships between ancient values and the needs of modern-day climate adaptation strategies. CONCLUSIONS: There are many products that can be produced from Agave species, including food, sugar, fibre and medicines. Traditional knowledge about agricultural management and preparation of plant products can be combined with new ecophysiological knowledge and agronomic techniques to develop these resources in the borderland region of the southwestern USA and Mexico. Historical records of pre-Columbian practices in the Sonoran desert and remnants of centuries-old agriculture in Baja California and Sonora demonstrate the climate resilience of Agave agriculture. Commercial growth of both tequila and bacanora indicates the potential for large-scale production today, but also underscores the importance of adopting regenerative agricultural practices to accomplish environmentally sustainable production. Recent international recognition of the Appellation of Origin for several Agave species produced for spirits in Mexico might provide opportunities for agricultural diversification. In contrast, fibre is currently produced from several Agave species on many continents. Projections of growth with future climate change suggest that Agave spp. will be viable alternatives for commodity crops that suffer declines during drought and increased temperatures. Historical cultivation of Agave affirms that these CAM plants can supply sugar, soft and hard fibres, medicines and food supplements.


Assuntos
Agave , Metabolismo Ácido das Crassuláceas , Agave/metabolismo , Ecossistema , México , Açúcares/metabolismo
4.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770727

RESUMO

Vinasses represent important final disposal problems due to their physical-chemical composition. This work analyzed the composition of tequila vinasses and increased 5-hydroxymethylfurfural, furfural, and phenolic compounds using thermal hydrolysis with hydrogen peroxide as a catalyst. A statistical Taguchi design was used, and a UPLC-MS (XEVO TQS Micro) analysis determined the presence and increase of the components. The treatment at 130 °C, 40 min, and 0.5% of catalyst presented the highest increase for 5-HMF (127 mg/L), furfural (3.07 mg/L), and phenol compounds as chlorogenic (0.36 mg/L), and vanillic acid (2.75 mg/L). Additionally, the highest removal of total sugars (57.3%), sucrose (99.3%), and COD (32.9%). For the treatment T130:30m:0P the syringic (0.74 mg/L) and coumaric (0.013 mg/L) acids obtained the highest increase, and the treatment T120:30m:1P increased 3-hydroxybenzoic (1.30 mg/L) and sinapic (0.06 mg/L) acid. The revaluation of vinasses through thermal treatments provides guidelines to reduce the impact generated on the environment.

5.
Plants (Basel) ; 11(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079658

RESUMO

Traditional agave spirits such as mezcal or tequila are produced all over Mexico using different species of Agave. Amongst them, A. angustifolia is the most popular given its agricultural extension. A. angustifolia is a wild species extensively distributed from North to Central America, and previous studies show that it is highly related to the tequila agave A. tequilana. In different regions of Mexico, A. angustifolia is cultivated under different types and levels of management, and although traditional producers identify several landraces, for the non-trained eye there are no perceivable differences. After interviews with producers from different localities in Jalisco, Mexico, we sampled A. angustifolia plants classified as different landraces, measured several morphological traits, and characterized their genetic differentiation and diversity at the genome-wide level. We included additional samples identified as A. tequilana and A. rhodacantha to evaluate their relationship with A. angustifolia. In contrast with previous studies, our pool of ca 20K high quality unlinked SNPs provided more information and helped us to distinguish different genetic groups that are congruent with the ethnobotanical landraces. We found no evidence to genetically delimitate A. tequilana, A. rhodacantha and A. angustifolia. Our large genome level dataset allows a better understanding of the genetic identity of important A. angustifolia traditional and autochthonous landraces.

6.
Foods ; 11(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454724

RESUMO

The interest of consumers to acquire Tequila has caused an increase in its sales. As demand increases, the Tequila industry must obtain its raw material at a constant rate and agave farmers must be prepared to satisfy this supply chain. Because of this, modernization of the strategies used to ensure a planned, scheduled, timely, and predictable production will allow farmers to maintain the current demand for Tequila. This has been evidenced in official historical records from 1999 to 2020 where there is a fluctuation in the price of agave due to supply and demand. Given this scenario, this research shows the development of a multivariable predictive mathematical model that will permit the agave−Tequila production chain to work based on a smart implementation of planned actions to guarantee the agave supply to the Tequila industry. The proposed model has a goodness of fit (R = 0.8676; R¯2 = 0.8609; F(1,20) = 131.01 > F0.01 (1,20) = 8.10) and demonstrates the impact on agave prices is due to several factors: Tequila exports (α = 0.50) > agave plants harvested "jima" (α = 0.44) > dollar exchange (α = 0.43) > Tequila production (α = 0.06) > annual accumulated precipitation (α = 0.05). Nevertheless, the price forecast can be influenced by climate change or economic crises that affect the supply chain. In conclusion, a prediction of agave price stabilization for five years is shown where authorized producers can evaluate future scenarios so that the agave supply chain can be guaranteed for Tequila production, facilitating the decision making regarding its raw material.

7.
Materials (Basel) ; 16(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36614347

RESUMO

In the present research work, the use of agro-industrial waste such as agave bagasse from the tequila industry was carried out. The agave bagasse was treated to obtain biosorbent and hydrochar materials. Direct Blue 86 was used as an adsorbate model to evaluate the performance of both materials. The adsorption studies showed an adsorption capacity of 6.49 mg g−1 in static and 17.7 mg g−1 in dynamic, associated with a physisorption process between functional groups of the material and the dye. The characterization of the biosorbent showed that the material was mainly composed of macroporous fibers with a surface area <5.0 m2 g−1. Elemental analysis showed a majority composition of C (57.19 wt%) and O (37.49 wt%). FTIR and XPS analyses showed that the material had C-O, C=O, -OH, O-C=O, and -NH2 surface groups. RAMAN and TGA were used to evaluate the composition, being cellulose (40.94%), lignin (20.15%), and hemicellulose (3.35%). Finally, the life-cycle assessment at a laboratory scale showed that the proposed biosorbent presents a 17% reduction in several environmental aspects compared to hydrochar, showing promise as an eco-friendly and highly efficient method for the remediation of water contaminated with dye, as well as being a promising alternative for the responsible management of solid waste generated by the tequila industry.

8.
Foods ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34945653

RESUMO

Due to the oversupply and scarcity cycles of the Agave tequilana Weber blue variety, the effect of agave age (harvested in 4, 5, and 6 years) as raw material for the tequila 100% agave silver class was studied for each stage in a full-scale (industrial) process. Harvested plants showed differences in their morphological characteristics that affected the amount of juice; this had an impact in the fermentation stage since must composition was modified in the nitrogen content and juice/exudate ratio. This was noticed due to an increase in the production of higher alcohols attributed to the odd-chain fatty of the exudate, which affects n-propanol production. The characterization of the final product showed the feasibility to use agaves (less than 7 years) to produce the Tequila 100% agave silver class and to comply with the quality criteria. Furthermore, the final product was analyzed with the gas chromatography-isotope ratio mass-spectrometry technique to determine its authenticity. The δ13CVPDB isotopic parameter (-13.40‱ in average) values show the type of plant used as a raw material for ethanol production, while the δ18OVSMOW (20.52‱ in average) isotopic parameter can be helpful in corroborating and ensuring the traceability of the product and the geographical location of the beverage production.

9.
Molecules ; 26(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808745

RESUMO

Isotopic ratios of δ13CVPDB and δ18OVSMOW have been used as an additional parameter to ensure the authenticity of the aging time of 100% agave tequila. For this purpose, 120 samples were isotopically analyzed (40 silver class, 40 aged class, and 40 extra-aged classes). The samples were obtained through a stratified sampling by proportional allocation, considering tequila producers from the main different regions of Jalisco, Mexico (Valles 41%, Altos Sur 31%, Cienega 16%, and Centro 12%). The results showed that the δ13CVPDB was found in an average of -12.85 ‰ for all the analyzed beverages, with no significant difference between them. Since for all the tested samples the Agave tequilana Weber blue variety was used as source of sugar to obtain alcohol, those results were foreseeable, and confirm the origin of the sugar source. Instead, the results for δ18OVSMOW showed a positive slope linear trend for the aging time (silver class 19.52‰, aged class 20.54‰, extra-aged class 21.45‰), which is associated with the maturation process, there are oxidation reactions that add congeneric compounds to the beverage, these can be used as tracers for the authenticity of the aging time. Additionally, the experimental data showed homogeneity in the beverages regardless of the production region, evidencing the tequila industry's high-quality standards. However, a particular case occurs with the δ18OVSMOW data for the silver class samples, in which a clear trend is noted with the altitude of the region of origin; therefore, this information suggests that this analytical parameter could be useful to authenticate the regional origin of beverage.


Assuntos
Agave , Bebidas Alcoólicas/análise
10.
Biosensors (Basel) ; 11(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801493

RESUMO

The present work reports the development of a biologically inspired analytical system known as Electronic Eye (EE), capable of qualitatively discriminating different tequila categories. The reported system is a low-cost and portable instrumentation based on a Raspberry Pi single-board computer and an 8 Megapixel CMOS image sensor, which allow the collection of images of Silver, Aged, and Extra-aged tequila samples. Image processing is performed mimicking the trichromatic theory of color vision using an analysis of Red, Green, and Blue components (RGB) for each image's pixel. Consequently, RGB absorbances of images were evaluated and preprocessed, employing Principal Component Analysis (PCA) to visualize data clustering. The resulting PCA scores were modeled with a Linear Discriminant Analysis (LDA) that accomplished the qualitative classification of tequilas. A Leave-One-Out Cross-Validation (LOOCV) procedure was performed to evaluate classifiers' performance. The proposed system allowed the identification of real tequila samples achieving an overall classification rate of 90.02%, average sensitivity, and specificity of 0.90 and 0.96, respectively, while Cohen's kappa coefficient was 0.87. In this case, the EE has demonstrated a favorable capability to correctly discriminated and classified the different tequila samples according to their categories.


Assuntos
Bebidas Alcoólicas/análise , Dispositivos Ópticos , Cor , Análise Discriminante , Eletrônica , Processamento de Imagem Assistida por Computador , Análise de Componente Principal
11.
Bioresour Technol ; 329: 124865, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33639381

RESUMO

There is a great interest for replacing petroleum-derived chemical processes with biological processes to obtain fuels and plastics from industrial waste. Accordingly, Rhodopseudomonas species are capable of producing hydrogen and polyhydroxybutyrate. Culture conditions for production of both hydrogen and polyhydroxybutyrate with Rhodopseudomonas pseudopalustris (DSM 123) from tequila vinasses were analyzed. The production of hydrogen using tequila vinasses was higher with respect to two synthetic media. Replacing the headspace with N2 increased the production of hydrogen with respect to Argon, while a higher concentration of polyhydroxybutyrate was achieved using Argon as compared to N2. A higher concentration of phosphates increased the production of hydrogen (250 mL), while the highest concentration of polyhydroxybutyrate (305 mg/L) was accomplished when the bacteria were cultivated only with phosphates contained in tequila vinasses. This study revealed that the culture conditions for Rhodopseudomonas pseudopalustris (DSM 123) for production of hydrogen are the opposite of those for production of polyhydroxybutyrate.


Assuntos
Rodopseudomonas , Hidrogênio , Resíduos Industriais/análise , Nutrientes
12.
Environ Sci Pollut Res Int ; 28(19): 23699-23706, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33010016

RESUMO

Vinasse wastewater from tequila industry that has been conventionally treated is usually characterized by a chemical oxygen demand (COD) above 150 mg L-1, which is the maximum content permitted for discharge by Mexican Regulation. In order to increase the wastewater quality, different processes were applied, and from the experimental results, the advantages and limitations were analyzed. In this way, although Fenton experiments showed acceptable COD removal efficiencies (79-90%), operation as well as cost limit its adoption as a viable technology. Therefore, additional experiments explored electro-Fenton (EF) as well as adsorption coupled to EF in a tubular reactor. The corresponding data revealed that there was no additional increase in COD removal performance probably due to the low oxygen solubility in the electrolytic solution and the high pH that prevents the existence of Fe2+ ions necessary for the Fenton mixture. In view of these results, when an activated carbon (AC) filter was coupled to polarization at current densities between 0.5 and 2 mA cm-2, removal efficiencies from 71 to 81%, corresponding to final COD of 78 to 33 mg L-1, were achieved. Also, the adsorbent surface was continuously regenerated, promoting a more efficient adsorption and a longer service life for the AC filter. In this case, by using a current density of 0.5 mA cm-2, COD was reduced to sufficiently small values for discharge into natural water bodies, maintaining low energy consumption and therefore acceptable operation costs.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Análise da Demanda Biológica de Oxigênio , Peróxido de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos
13.
J Sci Food Agric ; 100(15): 5324-5333, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32535922

RESUMO

Agaves are a group of succulent plants that thrive in arid or semiarid environments. Indeed, genes associated with their resilience are a potential resource for genetic engineering of other agronomically important crops grown in adverse climates. Agave is mainly used for the production of distilled (spirits) and non-distilled alcoholic beverages, including tequila, mezcal, bacanora, raicilla, and pulque, all of which have special connections to Mexican history and culture, and contribute to the Mexican economy. In recent years, there has been growing interest to maximize the use of agave plant materials for other purposes, as the bulk of their biomass pre- and post-production is wasted. In traditional practice, during the passage from fields to factories, only agave cores are used, and the leaves and bagasse are not always harnessed. To place this in perspective, during the period from 2010 to 2019, 2674.7 × 106 L of tequila was produced in Mexico, which required 9 607 400 tons of agave cores. This generated approximately the same amount of leaves and 3 842 960 tons of bagasse. The economic base of agave plants can be expanded if expended biomass could be transformed into products that are useful for applications in food, forage, ensilage, agriculture, medicine, energy, environment, textiles, cosmetics, and esthetics. This review focuses on the current utility of agave plants, as well as our perspective for future studies and uses of this formidable plant. © 2020 Society of Chemical Industry.


Assuntos
Agave/química , Resíduos/análise , Bebidas Alcoólicas/análise , Celulose/análise , Fermentação , México , Energia Renovável
14.
Biotechnol Rep (Amst) ; 25: e00420, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32025510

RESUMO

Vinasses from the tequila industry are wastewaters with highly elevated organic loads. Therefore, to obtain value-added products by yeast fermentations, such as 2-phenylethanol (2-PE) and 2-phenylethylacetate (2-PEA), could be interesting for industrial applications from tequila vinasses. In this study, four yeasts species (Wickerhamomyces anomalus, Candida glabrata, Candida utilis, and Candida parapsilosis) were evaluated with two different chemically defined media and tequila vinasses. Differences in the aroma compounds production were observed depending on the medium and yeast species used. In tequila vinasses, the highest concentration (65 mg/L) of 2-PEA was reached by C. glabrata, the inhibitory compounds decreased biomass production and synthesis of 2-PEA, and biochemical and chemical oxygen demands were reduced by more than 50 %. Tequila vinasses were suitable for the production of 2-phenylethylacetate by the shikimate pathway. A metabolic network was developed to obtain a guideline to improve 2-PE and 2-PEA production using flux balance analysis (FBA).

15.
J Environ Sci Health B ; 55(2): 148-154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31607217

RESUMO

The presence of diethyl-phthalate (DEP), dibutyl-phthalate (DBP), butylbenzyl-phthalate (BBP), diethylhexyl-phthalate (DEHP) and diisononyl-phthalate (DINP) was determined in 295 tequila samples. They were grouped by age of maturation (white, aged, extra aged or ultra aged) and year of production (between 2013 and 2018). Gas Chromatography coupled with Mass Spectrometry was used for identification and quantification. The results showed that 65 samples (22% of the total) were phthalate free. DEP (0.13-0.27 mg/kg), BBP (0.05-2.91 mg/kg) and DINP (1.64-3.43 mg/kg) were detected in 11 (3.73%), 37 (12.54%) and 5 (1.69%) samples, respectively. But, these concentrations did not exceed the maximum permitted limits (MPL) of phthalates for alcoholic beverages. DBP (0.01-2.20 mg/kg) and DEHP (0.03-4.64 mg/kg) were detected in 96 (32.54%) and 224 (75.93%) samples, from them only 10 (3.39%) and 15 (5.08%) samples, respectively, exceeded the MPL for alcoholic beverages and they were few tequilas produced in the year 2014 or before. DEHP was the most frequent phthalate found in tequila and observed DEHP concentrations were 2-times higher in ultra aged tequilas compared to those in white tequilas. We concluded that all tequilas produced in 2015 and after, satisfied the international standards for these compounds.


Assuntos
Bebidas Alcoólicas/análise , Contaminação de Alimentos/análise , Ácidos Ftálicos/análise , Dibutilftalato/análise , Dietilexilftalato/análise , Análise de Alimentos , Cromatografia Gasosa-Espectrometria de Massas/métodos , México , Fatores de Tempo
16.
Food Microbiol ; 86: 103339, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703886

RESUMO

The study of microbial communities associated with spontaneous fermentation of agave juice for tequila production is required to develop starter cultures that improve both yield and quality of the final product. Quantification by HPLC of primary metabolites produced during the fermentations was determined. A polyphasic approach using plate count, isolation and identification of microorganisms, denaturing gradient gel electrophoresis and next generation sequencing was carried out to describe the diversity and dynamics of yeasts and bacteria during small-scale spontaneous fermentations of agave juice from two-year samplings. High heterogeneity in microbial populations and fermentation parameters were observed, with bacteria showing higher diversity than yeast. The core microorganisms identified were Saccharomyces cerevisiae and Lactobacillus fermentum. Practices in tequila production changed during the two-year period, which affected microbial community structure and the time to end fermentation. Bacterial growth and concomitant lactic acid production were associated with low ethanol production, thus bacteria could be defined as contaminants in tequila fermentation and efforts to control them should be implemented.


Assuntos
Bebidas Alcoólicas/microbiologia , Bactérias/metabolismo , Leveduras/isolamento & purificação , Agave/química , Agave/microbiologia , Bebidas Alcoólicas/análise , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Etanol/metabolismo , Fermentação , Cinética , Limosilactobacillus fermentum/química , Limosilactobacillus fermentum/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Leveduras/química , Leveduras/genética , Leveduras/metabolismo
17.
Bioresour Technol ; 295: 122182, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31623922

RESUMO

The performance and microbial communities of a continuous dark fermentation reactor exposed to perturbations induced by substrate change and acidic pH shock were investigated. A mesophilic well-mixed reactor separately fed with two types of tequila vinasses (TVs) and lactose was operated at a fixed pH of 5.5, except during short-term pH (3.8) stress, for ~61 days at decreasing hydraulic retention times (HRTs) from 24 to 4 h. During the first ~23 days of operation with TV, a decrease in HRT down to 4 h resulted in the highest reported biohydrogen productivity from TV of 12.4 NL/L-d. It was shown that abrupt change in TV type (even with temporal feeding of lactose) and transient over-acidification impaired the normal operation of the reactor. However, it rapidly recovered from such disturbances, sustaining similar high-rate productivity to that previously encountered. Recovery was attributed to resistant and resilient microbial community features, as supported by molecular characterisation.


Assuntos
Reatores Biológicos , Microbiota , Bactérias , Fermentação , Hidrogênio , Concentração de Íons de Hidrogênio
18.
Data Brief ; 27: 104707, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31879694

RESUMO

This article contains data obtained by following the evolution of minor volatile compounds throughout 32 weeks of 100% Agave Silver tequila maturation in new French oak barrels under real cellar conditions. Barrels were made with the same cooperage methods in four French regions. Tequila samples were obtained every 2 weeks; volatile compounds were extracted and analyzed by GC-MS. Volatile compounds were identified and relatively quantified in % of Area. Obtained data are presented in three datasets: Identified compounds, quantification according to barrel origin, and quantification according to maturation time. General Discriminant Analysis of the quantification data sets are also shown. Interpretation of the data and discussion can be found in "Evolution of volatile compounds during the maturation process of Silver tequila in new French oak barrels" Martín-del-Campo, López-Ramírez and Estarrón-Espinosa [1].

19.
Bioengineering (Basel) ; 6(4)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861111

RESUMO

Tequila agave bagasse (TAB) is the fibrous waste from the Tequila production process. It is generated in large amounts and its disposal is an environmental problem. Its use as a source of fermentable sugars for biotechnological processes is of interest; thus, it was investigated for the production of polyhydroxybutyrate (PHB) by the xylose-assimilating bacteria Burkholderia sacchari. First, it was chemically hydrolyzed, yielding 20.6 g·L-1 of reducing sugars, with xylose and glucose as the main components (7:3 ratio). Next, the effect of hydrolysis by-products on B. sacchari growth was evaluated. Phenolic compounds showed the highest toxicity (> 60% of growth inhibition). Then, detoxification methods (resins, activated charcoal, laccases) were tested to remove the growth inhibitory compounds from the TAB hydrolysate (TABH). The highest removal percentage (92%) was achieved using activated charcoal (50 g·L-1, pH 2, 4 h). Finally, detoxified TABH was used as the carbon source for the production of PHB in a two-step batch culture, reaching a biomass production of 11.3 g·L-1 and a PHB accumulation of 24 g PHB g-1 dry cell (after 122 h of culture). The polymer structure resulted in a homopolymer of 3-hydroxybutyric acid. It is concluded that the TAB could be hydrolyzed and valorized as a carbon source for producing PHB.

20.
World J Microbiol Biotechnol ; 34(10): 152, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267248

RESUMO

Vinasse is a waste obtained from the production of beverages, such as tequila and cachaça. The presence of acids, alcohols, sugars, minerals, amino acids, peptides, and nitrogen salts make vinasse a hazardous liquid waste to the environment, affecting the fauna, flora, and microbiota of rivers and lagoons. This study used biological treatment concomitant to volatile compound production. The yeasts used in the study were Saccharomyces cerevisiae (CCMA 0187 and CCMA 0188), Candida parapsilosis (CCMA 0544), and Pichia anomala (CCMA 0193). A higher percentage reduction in chemical and biochemical oxygen demand was observed in the tequila vinasse than in the cachaça vinasse. However, a higher production of volatile compounds was observed in the cachaça vinasse. C. parapsilosis CCMA 0544 produced the highest concentration of 2-phenylethanol (162 mg L-1). These results indicated that the environmental damage of vinasse can be reduced by treating vinasse with yeasts, and this treatment produces aroma compounds. This biological treatment has high economic potential, especially for the tequila industry.


Assuntos
Bebidas Alcoólicas , Aromatizantes/metabolismo , Resíduos Industriais , Compostos Orgânicos Voláteis/metabolismo , Gerenciamento de Resíduos/métodos , Leveduras/metabolismo , Agave/química , Agave/microbiologia , Álcoois/metabolismo , Análise da Demanda Biológica de Oxigênio , Biomassa , Candida/metabolismo , Poluição Ambiental/prevenção & controle , Fermentação , Concentração de Íons de Hidrogênio , Álcool Feniletílico/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharum , Temperatura , Compostos Orgânicos Voláteis/análise , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA