Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceutics ; 15(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896206

RESUMO

The dissolution rate of the anti-HIV drug saquinavir base (SQV), a poorly water-soluble and extremely low absolute bioavailability drug, was improved through a eutectic mixture formation approach. A screening based on a liquid-assisted grinding technique was performed using a 1:1 molar ratio of the drug and the coformers sodium saccharinate, theobromine, nicotinic acid, nicotinamide, vanillin, vanillic acid, and piperine (PIP), followed by differential scanning calorimetry (DSC). Given that SQV-PIP was the only resulting eutectic system from the screening, both the binary phase and the Tammann diagrams were adapted to this system using DSC data of mixtures prepared from 0.1 to 1.0 molar ratios in order to determine the exact eutectic composition. The SQV-PIP system formed a eutectic at a composition of 0.6 and 0.40, respectively. Then, a solid-state characterization through DSC, powder X-ray diffraction (PXRD), including small-angle X-ray scattering (SAXS) measurements to explore the small-angle region in detail, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a powder dissolution test were performed. The conventional PXRD analyses suggested that the eutectic mixture did not exhibit structural changes; however, the small-angle region explored through the SAXS instrument revealed a change in the crystal structure of one of their components. FT-IR spectra showed no molecular interaction in the solid state. Finally, the dissolution profile of SQV in the eutectic mixture was different from the dissolution of pure SQV. After 45 min, approximately 55% of the drug in the eutectic mixture was dissolved, while, for pure SQV, 42% dissolved within this time. Hence, this study concludes that the dissolution rate of SQV can be effectively improved through the approach of using PIP as a coformer.

2.
Pharm Res ; 39(1): 189-200, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35064418

RESUMO

PURPOSE: To understand the anomalous behavior of Saquinavir Mesylate (SQVM) in sodium decyl sulfate (SDS) medium during a dissolution test through a crystallographic analysis of the crystal obtained. As a result, it will be possible to elucidate its crystal structure and carry out a complete solid-state characterization of the API. METHODS: The solid form obtained was characterized by a structural analysis through X-ray single crystal and powder diffraction. The crystallographic structures of the new salt and the SQVM were compared. In addition, a complete solid-state characterization of SQVM raw material was carried out by techniques such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Raman spectroscopy, scanning electron microscopy and a dissolution method. RESULTS: A new salt consisting of SQVM and SDS was crystallized and its crystal structure was elucidated and reported herein for the first time. The anionic part of SDS interacts with the cationic segment of SQVM to obtain a new salt designated as SQV-DS, which precipitates. The main difference between the two structures occurs in the c-axis expansion, which increases from 15.966 (5) to 21.1924 (14), respectively. CONCLUSIONS: Some of the strategies to enhance the dissolution rate of poorly aqueous soluble APIs include the use of surfactants such as SDS in the dissolution medium, as well as in the formulated products. However, there have been constant reports of a dissolution rate slowdown by some surfactants. The interaction mechanisms between the APIs and the dissolution medium containing surfactants need to be carefully investigated in current pharmaceutical formulations. Graphical Abstract.


Assuntos
Saquinavir , Sódio , Varredura Diferencial de Calorimetria , Preparações Farmacêuticas , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sulfatos , Difração de Raios X
3.
Drug Dev Ind Pharm ; 47(10): 1556-1567, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34821528

RESUMO

The use of polymeric blends is a potential strategy to obtain novel nanotechnological formulations aiming at drug delivery systems. Saquinavir, an antiretroviral drug, was chosen as a model drug for the development of new stable liquid formulations with unpleasant taste masking properties. Three formulations containing different polymeric ratios (1:3, 1:1 and 3:1) were prepared and properly characterized by particle size distribution, zeta potential, pH, drug content and encapsulation efficiency measurements. The stability was verified by monitoring the zeta potential, particle size distribution, polydispersity index and drug content by 90 days. The light backscattering analysis was used to early identify possible phenomena of instability in the formulations. The in vitro drug release and saquinavir cytotoxicity were evaluated. The in vitro and in vivo taste masking properties were studied using an electronic tongue and a human sensory panel. All formulations presented nanometric sizes around 200 nm and encapsulation efficiency above 99%. The parameters evaluated for stability remained constant throughout 90 days. The in vitro tests showed a controlled drug release and absence of toxic effects on human T lymphocytes. The electronic tongue experiment showed taste differences for all formulations in comparison to drug solutions, with a more pronounced difference for the formulation with higher polycaprolactone content (3:1). This formulation was chosen for in vivo sensory panel evaluation which results corroborated the electronic tongue experiments. In conclusion, the polymer blend nanoformulation developed herein showed the promising application to incorporate drugs aiming at pharmaceutical taste-masking properties.


Assuntos
Saquinavir , Paladar , Humanos , Preparações Farmacêuticas/química , Poliésteres , Polímeros , Saquinavir/farmacologia
4.
Mater Sci Eng C Mater Biol Appl ; 117: 111315, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919675

RESUMO

This research has aimed to improve the stability and taste-masking properties by developing nanostructured dosage forms containing Saquinavir. Liquid formulations were developed using Eudragit RS100® and Pullulan as polymers. The physicochemical characteristics, stability, in vitro drug release, morphology, mucoadhesion and taste masking capacity were evaluated. The Saquinavir-nanoparticles had average diameters between 136 and 158 nm, with a Span below 1.4. These formulations presented a drug content above 80%, a high encapsulation efficiency (>97%), slightly acidic pH levels, low dynamic viscosity and controlled drug release. Electron microscopy revealed irregular spherical nanoparticles. The formulations prepared with higher amounts of Eudragit RS100® had greater mucoadhesion. Both polymers were able to improve drug stabilization, taste-masking properties and protection against drug cytotoxicity. The Saquinavir-nanoparticles exhibited stability and control releasing properties, thus making it a promising liquid dosage form with taste-masking properties intended for application in pediatric treatment.


Assuntos
Nanopartículas , Saquinavir , Administração Oral , Criança , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Saquinavir/farmacologia , Solubilidade , Paladar
5.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(10): e7579, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951716

RESUMO

Glucocorticoid insensitivity is an important barrier to the treatment of several inflammatory diseases, including acute lung injury (ALI). Saquinavir (SQV) is an inhibitor of the human immunodeficiency virus protease, and the therapeutic effects of SQV in ALI accompanied with glucocorticoid insensitivity have not been previously investigated. In this study, the effects of SQV on lipopolysaccharide (LPS)-mediated injury in human pulmonary microvascular endothelial cells (HPMECs), human type I alveolar epithelial cells (AT I), and alveolar macrophages were determined. In addition, the effects of SQV on an LPS-induced ALI model with or without methylprednisolone (MPS) were studied. In LPS-stimulated HPMECs, SQV treatment resulted in a decrease of high mobility group box 1 (HMGB1), phospho-NF-κB (p-NF-κB), and toll-like receptor 4 (TLR4), and an increase of VE-cadherin. Compared to MPS alone, MPS plus SQV attenuated the decrease of glucocorticoid receptor alpha (GRα) and IκBα in LPS-stimulated HPMECs. HMGB1, TLR4, and p-NF-κB expression were also lessened in LPS-stimulated alveolar macrophages with SQV treatment. In addition, SQV reduced the injury in human AT I with a decrease of HMGB1 and p-NF-κB, and with an increase of aquaporin 5 (AQP 5). SQV ameliorated the lung injury caused by LPS in rats with reductions in vascular permeability, myeloperoxidase activity (MPO) and histopathological scores, and with lowered HMGB1, TLR4, and p-NF-κB expression, but with enhanced VE-cadherin expression. By comparison, SQV plus MPS increased GRα and IκBα in lung tissues of rats with ALI. This study demonstrated that SQV prevented experimental ALI and improved glucocorticoid insensitivity by modulating the HMGB1/TLR4 pathway.


Assuntos
Animais , Masculino , Ratos , Metilprednisolona/administração & dosagem , Saquinavir/administração & dosagem , Lesão Pulmonar Aguda/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Antígenos CD/efeitos dos fármacos , Antígenos CD/metabolismo , Caderinas/efeitos dos fármacos , Caderinas/metabolismo , Lipopolissacarídeos , Ratos Sprague-Dawley , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Modelos Animais de Doenças , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente
6.
Braz. j. infect. dis ; Braz. j. infect. dis;20(2): 155-159, Mar.-Apr. 2016. tab
Artigo em Inglês | LILACS | ID: lil-780810

RESUMO

Abstract Recent studies have shown that some drugs that are not routinely used to treat fungal infections have antifungal activity, such as protease inhibitor antiretroviral drugs. This study investigated the in vitro susceptibility of Histoplasma capsulatum var. capsulatum to saquinavir and ritonavir, and its combination with the antifungal itraconazole. The susceptibility assay was performed according to Clinical and Laboratory Standards Institute guidelines. All strains were inhibited by the protease inhibitor antiretroviral drugs. Saquinavir showed minimum inhibitory concentrations ranging from 0.125 to 1 μg mL−1 for both phases, and ritonavir presented minimum inhibitory concentrations ranging from 0.0312 to 4 μg mL−1and from 0.0625 to 1 μg mL−1 for filamentous and yeast phase, respectively. Concerning the antifungal itraconazole, the minimum inhibitory concentration values ranged from 0.0019 to 0.125 μg mL−1 and from 0.0039 to 0.0312 μg mL−1 for the filamentous and yeast phase, respectively. The combination of saquinavir or ritonavir with itraconazole was synergistic against H. capsulatum, with a significant reduction in the minimum inhibitory concentrations of both drugs against the strains (p < 0.05). These data show an important in vitro synergy between protease inhibitors and itraconazole against the fungus H. capsulatum.


Assuntos
Inibidores da Protease de HIV/farmacologia , Itraconazol/farmacologia , Ritonavir/farmacologia , Saquinavir/farmacologia , Histoplasma/efeitos dos fármacos , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
7.
Braz J Infect Dis ; 20(2): 155-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26748233

RESUMO

Recent studies have shown that some drugs that are not routinely used to treat fungal infections have antifungal activity, such as protease inhibitor antiretroviral drugs. This study investigated the in vitro susceptibility of Histoplasma capsulatum var. capsulatum to saquinavir and ritonavir, and its combination with the antifungal itraconazole. The susceptibility assay was performed according to Clinical and Laboratory Standards Institute guidelines. All strains were inhibited by the protease inhibitor antiretroviral drugs. Saquinavir showed minimum inhibitory concentrations ranging from 0.125 to 1µgmL(-1) for both phases, and ritonavir presented minimum inhibitory concentrations ranging from 0.0312 to 4µgmL(-1)and from 0.0625 to 1µgmL(-1) for filamentous and yeast phase, respectively. Concerning the antifungal itraconazole, the minimum inhibitory concentration values ranged from 0.0019 to 0.125µgmL(-1) and from 0.0039 to 0.0312µgmL(-1) for the filamentous and yeast phase, respectively. The combination of saquinavir or ritonavir with itraconazole was synergistic against H. capsulatum, with a significant reduction in the minimum inhibitory concentrations of both drugs against the strains (p<0.05). These data show an important in vitro synergy between protease inhibitors and itraconazole against the fungus H. capsulatum.


Assuntos
Antifúngicos/farmacologia , Inibidores da Protease de HIV/farmacologia , Histoplasma/efeitos dos fármacos , Itraconazol/farmacologia , Ritonavir/farmacologia , Saquinavir/farmacologia , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana
8.
Eur J Med Chem ; 93: 338-48, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25707014

RESUMO

In spite of remarkable advances in the knowledge on Trypanosoma cruzi biology, no medications to treat Chagas disease have been approved in the last 40 years and almost 8 million people remain infected. Since the public sector and non-profit organizations play a significant role in the research efforts on Chagas disease, it is important to implement research strategies that promote translation of basic research into the clinical practice. Recent international public-private initiatives address the potential of drug repositioning (i.e. finding second or further medical uses for known-medications) which can substantially improve the success at clinical trials and the innovation in the pharmaceutical field. In this work, we present the computer-aided identification of approved drugs clofazimine, benidipine and saquinavir as potential trypanocidal compounds and test their effects at biochemical as much as cellular level on different parasite stages. According to the obtained results, we discuss biopharmaceutical, toxicological and physiopathological criteria applied to decide to move clofazimine and benidipine into preclinical phase, in an acute model of infection. The article illustrates the potential of computer-guided drug repositioning to integrate and optimize drug discovery and preclinical development; it also proposes rational rules to select which among repositioned candidates should advance to investigational drug status and offers a new insight on clofazimine and benidipine as candidate treatments for Chagas disease. One Sentence Summary: We present the computer-guided drug repositioning of three approved drugs as potential new treatments for Chagas disease, integrating computer-aided drug screening and biochemical, cellular and preclinical tests.


Assuntos
Reposicionamento de Medicamentos/métodos , Tripanossomicidas/farmacologia , Animais , Clofazimina/metabolismo , Clofazimina/farmacologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Di-Hidropiridinas/metabolismo , Di-Hidropiridinas/farmacologia , Feminino , Masculino , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica , Proteínas de Protozoários , Saquinavir/metabolismo , Saquinavir/farmacologia , Tripanossomicidas/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA