Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Aging Neurosci ; 13: 681498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497504

RESUMO

Increase in the quality of life, combined with drug strategies, has been studied as possibilities for improving memory and delaying the onset of neurodegenerative diseases. A previous study published by the group of the authors has shown that microdose lithium and enriched environment can improve memory in both mice and humans. To elucidate this relationship better, this study aimed to evaluate whether the chronic combination of these two strategies could increase healthy aging in Senescence Accelerated Mouse-Prone 8 (SAMP8). Animals were submitted to either one or both of these strategies until the age of 10 months when they were anesthetized and killed and their hippocampus was extracted. The untreated SAMP-8 group exhibited worse memory and reduced neuronal density with greater neurodegeneration and increased amyloid-ß plaque density compared with the control group. Moreover, significant alterations in proteins related to long-term potentiation, such as, synaptophysin and brain-derived neurotrophic factor (BDNF), were observed in this group. The strategies used in the study maintained long-term memory, reduced anxiety, and increased neuroprotection. Both strategies were efficient in reducing neurodegeneration and increasing parameters related to memory maintenance. In many experiments, the combination of the two strategies was more effective in improving healthy aging. This study sheds light on the combination of strategies that choose to improve the quality of life and drugs with low side effects. Moreover, it opens perspectives for a new field of study for healthy aging.

2.
Cell Mol Neurobiol ; 41(7): 1509-1520, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32642922

RESUMO

It was already shown that microdoses of lithium carbonate (Li2CO3) promoted memory stabilization in humans and mice. Prolonged treatment also reduced neuronal loss and increased the density of the neurotrophin BDNF in transgenic mice for Alzheimer's disease. The aim of this study was to evaluate whether lithium ions affect inflammatory profiles and neuronal integrity in an animal model of accelerated senescence (SAMP-8). Organotypic hippocampal cultures obtained from 11 to 12-month-old SAMP-8 mice were treated with 2 µM, 20 µM and 200 µM Li2CO3. 2 µM Li2CO3 promoted a significant reduction in propidium iodide uptake in the CA2 area of hippocampus, whereas 20 µM promoted neuroprotection in the CA3 and GrDG areas. 200 µM caused an increase in cellular death, showing toxicity. Measured with quantitative PCR, IL-1α, IL-6 and MIP-1B/CCL-4 gene expression was significantly reduced with 20 µM Li2CO3, whereas IL-10 gene expression was significantly increased with the same concentration. In addition, 2 µM and 20 µM Li2CO3 were also effective in reducing the activation of NFkB and inflammatory cytokines densities, as evaluated by ELISA. It is concluded that very low doses of Li2CO3 can play an important role in neuroprotection as it can reduce neuronal loss and neuroinflammation in older individuals.


Assuntos
Morte Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Lítio/farmacologia , Fármacos Neuroprotetores/farmacologia , Compostos de Fenilmercúrio/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
3.
J Cell Physiol ; 235(12): 9773-9784, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32437012

RESUMO

Oxidative stress and inflammation are crucial factors that increase with age. In the progression of multiple age-related diseases, antioxidants and bioactive compounds have been recognized as useful antiaging agents. Oxidized or reduced vitamin C exerts different actions on tissues and has different metabolism and uptake. In this study, we analyzed the antiaging effect of vitamin C, both oxidized and reduced forms, in renal aging using laser microdissection, quantitative reverse-transcription polymerase chain reaction, and immunohistochemical analyses. In the kidneys of old SAM mice (10 months of age), a model of accelerated senescence, vitamin C, especially in the oxidized form (dehydroascorbic acid [DHA]) improves renal histology and function. Serum creatinine levels and microalbuminuria also decrease after treatment with a decline in azotemia. In addition, sodium-vitamin C cotransporter isoform 1 levels, which were increased during aging, are normalized. In contrast, the pattern of glucose transporter 1 expression is not affected by aging or vitamin C treatment. We conclude that oxidized and reduced vitamin C are potent antiaging therapies and that DHA reverses the kidney damage observed in senescence-accelerated prone mouse 8 to a greater degree.


Assuntos
Ácido Ascórbico/farmacologia , Ácido Desidroascórbico/farmacologia , Inflamação/genética , Rim/efeitos dos fármacos , Transportadores de Sódio Acoplados à Vitamina C/genética , Envelhecimento/genética , Envelhecimento/patologia , Animais , Ácido Ascórbico/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Humanos , Inflamação/patologia , Rim/ultraestrutura , Camundongos , Estresse Oxidativo/efeitos dos fármacos
4.
Mol Ther ; 25(9): 2053-2061, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28669840

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Although many researchers have attempted to explain the origins of AD, developing an effective strategy in AD clinical therapy is difficult. Recent studies have revealed a potential link between AD and circRNA-associated-ceRNA networks. However, few genome-wide studies have identified the potential circRNA-associated-ceRNA pairs involved in AD. In this study, we systematically explored the circRNA-associated-ceRNA mechanism in a 7-month-old senescence-accelerated mouse prone 8 (SAMP8) model brain through deep RNA sequencing. We obtained 235 significantly dysregulated circRNA transcripts, 30 significantly dysregulated miRNAs, and 1,202 significantly dysregulated mRNAs. We then constructed the most comprehensive circRNA-associated-ceRNA networks in SAMP8 brain. GO analysis revealed that these networks were involved in regulating the development of AD from various angles, for instance, axon terminus (GO: 0043679) and synapse (GO: 0045202). Following rigorous selection, we discovered that the circRNA-associated-ceRNA networks in this AD mouse model were mainly involved in the regulation of Aß clearance (Hmgb2) and myelin function (Dio2). This research is the first to provide a systematic dissection of circRNA-associated-ceRNA profiling in SAMP8 mouse brain. The selected circRNA-associated-ceRNA networks can profoundly affect the diagnosis and therapy of AD in the future.


Assuntos
Encéfalo/metabolismo , Interferência de RNA , RNA/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/fisiopatologia , Análise por Conglomerados , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Estudos de Associação Genética , Aprendizagem em Labirinto , Memória , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , RNA Circular , RNA Mensageiro/genética
5.
Int J Pharm ; 517(1-2): 50-57, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27915007

RESUMO

Quercetin has been identified as a promising compound with a neuroprotective potential against age-related neurodegenerative diseases such as Alzheimer's disease (AD). Nevertheless, the clinical application of quercetin is hampered by its low oral bioavailability. The aim of this work was to evaluate the capability of nanoencapsulated quercetin in zein nanoparticles (NPQ), that significantly improves the oral absorption and bioavailability of the flavonoid, as potential oral treatment for AD. For this purpose, SAMP8 mice were orally treated for two months with either NPQ (25mg/kg every 48h) or a solution of quercetin (Q; 25mg/kg daily). NPQ displayed a size of 260nm and a payload of about 70µg/mg. For Q, no significant effects were observed in animals. On the contrary, the oral administration of NPQ improved the cognition and memory impairments characteristics of SAMP8 mice. These observations appeared to be related with a decreased expression of the hippocampal astrocyte marker GFAP. Furthermore, significant levels of quercetin were quantified in the brain of mice treated with nanoparticles. These findings highlight the potential of zein nanoparticles to promote the oral absorption of quercetin as well as the therapeutic potential of this flavonoid in AD pathogenesis.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Portadores de Fármacos/química , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Quercetina/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina , Administração Oral , Doença de Alzheimer/psicologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacocinética , Tamanho da Partícula , Quercetina/administração & dosagem , Quercetina/farmacocinética , Teste de Desempenho do Rota-Rod , Zeína/química , beta-Ciclodextrinas/química
6.
Neurosci Biobehav Rev ; 37(8): 1363-79, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23707776

RESUMO

Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Neurônios/metabolismo , Serotonina/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Humanos , Vias Neurais/metabolismo , Vias Neurais/patologia , Neurônios/patologia
7.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;46(5): 417-425, maio 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-675669

RESUMO

We evaluated changes in levels by comparing serum proteins in senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by 2-dimensional electrophoresis combined with mass spectrometry. Five protein spots were present in all SAMP8 serum samples, but only appeared in SAMR1 samples at 15 months of age except for spot 3, which also showed a slight expression in SAMR1-12 m sera. Two proteins decreased in the sera from SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8 sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413), chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase (32C2_A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4 antibody, which inhibits T cell proliferation. We found that M-T413 RNA level was significantly enhanced in splenocytes from SAMP8-2 m mice. This agreed with serum M-T413 protein alterations and a strikingly lower blood CD4+ T cell count in SAMP8 mice when compared to the age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413 protein volume. Age-related changes in serum proteins favored an increase in autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II, which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may serve as candidate biomarkers for early aging.


Assuntos
Animais , Masculino , Camundongos , Envelhecimento/sangue , Apolipoproteína A-II/sangue , Autoanticorpos/sangue , Estresse Oxidativo/genética , alfa-Fetoproteínas/metabolismo , Envelhecimento/genética , Apolipoproteína A-II/genética , Autoanticorpos/genética , Biomarcadores/sangue , Biomarcadores/metabolismo , Oxirredução , Proteômica , Baço/citologia , alfa-Fetoproteínas/genética
8.
Arq. neuropsiquiatr ; Arq. neuropsiquiatr;69(1): 105-111, Feb. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-598355

RESUMO

OBJECTIVE: Metallothionein 3 (MT-3) has been shown to protect against apoptotic neuronal death in the brains of patients with Alzheimer's disease. Zinc is a potent inhibitor of caspase-3 and its deficiency was found to promote apoptosis. Here, we measured the zinc and copper content in the brains of senescence-accelerated mouse/PRONE8 (SAMP8) and sought to investigate the effect of MT-3 on the apoptosis of neurons in the hippocampal CA1 region of these mice. METHOD: The zinc and copper content in the brain samples of SAMP8 and normal control SAMR1 mice were determined using an atomic absorption spectrophotometer. The mice were administered intraperitoneally for four weeks with MT-3 or MT1 and thereafter apoptosis was measured using the TUNEL method and the expression of anti-apoptotic protein Bcl-2 and proapoptotic protein Bax was examined by immunohistochemistry. RESULTS: Compared with that in SMAR1 mice, the content of zinc in the brains of SAMP8 mice was significantly reduced (P<0.05). Moreover, significant levels of apoptosis of neurons were observed in the hippocampus of SAMP8 mice, which, compared with those in SMAR1 mice, also showed significantly lower levels of Bcl-2 and higher levels of Bax (P<0.05). MT-3 increased zinc concentration in the hippocampus of SAMP8 mice and also significantly decreased apoptosis in these neurons dose-dependently and increased the levels of Bcl-2 and decreased the levels of Bax. CONCLUSION: MT-3 could attenuate apoptotic neuron death in the hippocampus of SAMP8, suggesting that the protein may lessen the development of neurodegeneration.


OBJETIVO: Metalotioneína 3 (MT-3) tem mostrado proteção contra a apoptose neuronal em cérebros de pacientes com doença de Alzheimer. Zinco é um potente inibidor da caspase-3, e sua deficiência pode promover a apoptose. No presente trabalho, foram dosados os níveis de zinco e cobre nos cérebros de camundongos PRONE8 com envelhecimento acelerado (SAMP8), visando investigar o efeito da MT-3 na apoptse dos neurônios da região hipocampal CA1 destes camundongos. MÉTODO: Os níveis de zinco e cobre em amostras cerebrais de camundongos SAMP8 e de controles normais SAMR1 foram determinados por absorção atômica em espectrofotometria. Foram administradas MT-3 ou MT-1 intraperitoneais durante quatro semanas, sendo em seguida avaliada a apoptose pelo método TUNEL , enquanto a expressão da proteína anti-apoptótica Bcl-2 e a proteína pró-apoptótica Bax foram avaliadas por imunohistoquímica. RESULTADOS: Em comparação aos camundongos SMAR1, o nível de zinco nas amostras cerebrais dos camundongos SAMP8 estava significativamente diminuído (P<0.05). Além disto, níveis significativos de apoptose foram observados no hipocampo dos camundongos SAMP8, o que, em comparação com os níveis em camundongos SMAR1, também mostrava níveis significativamente mais baixos de Bcl-2 e níveis mais altos de Bax (P<0.05). MT-3 aumentou a concentração de zinco no hipocampo dos camundongos SAMP8, além de diminuir significativamente a apoptose destes neurônios, de uma forma dose-dependente, ao mesmo tempo que aumentou níveis de Bcl-2 e diminuiu níveis de Bax. CONCLUSÃO: MT-3 pode atenuar a morte neuronal apoptótica no hipocampo de SAMP8, o que sugere que esta proteína possa diminuir a neurodegeneração.


Assuntos
Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Inibidores do Crescimento/farmacologia , Hipocampo/efeitos dos fármacos , Proteínas do Tecido Nervoso/farmacologia , Neurônios/efeitos dos fármacos , Envelhecimento , Química Encefálica , /antagonistas & inibidores , /deficiência , Cobre/análise , Hipocampo/metabolismo , Hipocampo/patologia , Metalotioneína/farmacologia , Neurônios/metabolismo , Neurônios/patologia , /análise , Especificidade da Espécie , Zinco/análise , Zinco/deficiência , /análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA