RESUMO
The COVID-19 pandemic has resulted in a significant toll of deaths worldwide, exceeding seven million individuals, prompting intensive research efforts aimed at elucidating the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 infection. Despite the rapid development of effective vaccines and therapeutic interventions, COVID-19 remains a threat to humans due to the emergence of novel variants and largely unknown long-term consequences. Among the viral proteins, the nucleocapsid protein (N) stands out as the most conserved and abundant, playing the primary role in nucleocapsid assembly and genome packaging. The N protein is promiscuous for the recognition of RNA, yet it can perform specific functions. Here, we discuss the structural basis of specificity, which is directly linked to its regulatory role. Notably, the RNA chaperone activity of N is central to its multiple roles throughout the viral life cycle. This activity encompasses double-stranded RNA (dsRNA) annealing and melting and facilitates template switching, enabling discontinuous transcription. N also promotes the formation of membrane-less compartments through liquid-liquid phase separation, thereby facilitating the congregation of the replication and transcription complex. Considering the information available regarding the catalytic activities and binding signatures of the N protein-RNA interaction, this review focuses on the regulatory role of the SARS-CoV-2 N protein. We emphasize the participation of the N protein in discontinuous transcription, template switching, and RNA chaperone activity, including double-stranded RNA melting and annealing activities.
RESUMO
RNA-binding proteins (RBPs) can undergo phase separation and form condensates, processes that, in turn, can be critical for their functionality. In a recent study, Huang, Ellis, and colleagues show that cellular stress can trigger transient alterations in nuclear TAR DNA-binding protein 43 (TDP-43), leading to changes crucial for proper neuronal function. These findings have implications for understanding neurological TDP-43 proteinopathies.
RESUMO
During virus infection, many host proteins are redirected from their normal cellular roles to restrict and terminate infection. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are cellular RNA-binding proteins critical to host nucleic acid homeostasis, but can also be involved in the viral infection process, affecting virus replication, assembly and propagation. It has become evident that hnRNPs play important roles in modulation of host innate immunity, which provides critical initial protection against infection. These novel findings can potentially lead to the leveraging of hnRNPs in antiviral therapies. We review hnRNP involvement in antiviral innate immunity, in humans, mice and other animals, and discuss hnRNP targeting as a potential novel antiviral therapeutic.
Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Imunidade Inata , Viroses , Humanos , Animais , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Viroses/imunologia , Replicação Viral , Camundongos , Interações Hospedeiro-Patógeno/imunologiaRESUMO
The RNA-binding PUF proteins are post-transcriptional regulators found throughout the eukaryotic domain. In Trypanosoma cruzi, ten Puf genes termed Puf1 to Puf10 have been identified. Considering that the control of gene expression in this parasite is mainly at the post-transcriptional level, we characterized the PUF3 protein by knocking out and overexpressing the gene in T. cruzi epimastigotes and studied different genetic and biological features. The RNA-seq analyses in both genotypes showed significant changes in the number of regulated transcripts compared with wild-type parasites. Thus, the number of differentially expressed genes in the knockout (ΔTcPuf3) and the overexpressor (pTEXTcPuf3) were 238 and 187, respectively. In the knockout, a more significant proportion of genes was negatively regulated (166 out of 238). In contrast, in the overexpressor, positively regulated genes were predominant (149 out of 170). Additionally, when we predicted the subcellular location of the differentially expressed genes, the results revealed an important representation of nuclear genes encoding mitochondrial proteins. Therefore, we determined whether overexpression or knockout of TcPuf3 could lead to changes in both mitochondrial structure and cellular respiration. When mitochondria from ΔTcPuf3 and pTEXTcPuf3 parasites were analyzed by transmission electron microscopy (TEM), it was observed that the overexpressor had an abnormal mitochondrial morphology, evidenced by swelling. The results associated with cellular respiration showed that both the ΔTcPuf3 and pTEXTcPuf3 had a lower efficiency in routine respiration and the electron transport system capacity. Likewise, the mitochondria from overexpressing parasites showed a slight hyperpolarization. Additionally, several biological features, depending on the function of the mitochondria, were altered, such as growth, cell division, metacyclogenesis, ROS production, and response to benznidazole. In conclusion, our results suggest that although PUF3 is not an essential protein in T. cruzi, it influences mitochondrial transcripts, affecting mitochondrial morphology and function.
RESUMO
Trypanosoma cruzi is the causative agent of Chagas disease, as well as a trypanosomatid parasite with a complex biological cycle that requires precise mechanisms for regulating gene expression. In Trypanosomatidae, gene regulation occurs mainly at the mRNA level through the recognition of cis elements by RNA-binding proteins (RBPs). Alba family members are ubiquitous DNA/RNA-binding proteins with representatives in trypanosomatid parasites functionally related to gene expression regulation. Although T. cruzi possesses two groups of Alba proteins (Alba1/2 and Alba30/40), their functional role remains poorly understood. Thus, herein, a characterization of T. cruzi Alba (TcAlba) proteins was undertaken. Physicochemical, structural, and phylogenetic analysis of TcAlba showed features compatible with RBPs, such as hydrophilicity, RBP domains/motifs, and evolutionary conservation of the Alba-domain, mainly regarding other trypanosomatid Alba. However, in silico RNA interaction analysis of T. cruzi Alba proteins showed that TcAlba30/40 proteins, but not TcAlba1/2, would directly interact with the assayed RNA molecules, suggesting that these two groups of TcAlba proteins have different targets. Given the marked differences existing between both T. cruzi Alba groups (TcAlba1/2 and TcAlba30/40), regarding sequence divergence, RNA binding potential, and life-cycle expression patterns, we suggest that they would be involved in different biological processes.
Assuntos
Filogenia , Proteínas de Protozoários , Proteínas de Ligação a RNA , Trypanosoma cruzi , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Ligação Proteica , Sequência de Aminoácidos , Sequência ConservadaRESUMO
Circular RNAs (circRNAs) are noncoding singlestranded covalently closed RNA molecules that are considered important as regulators of gene expression at the transcriptional and posttranscriptional levels. These molecules have been implicated in the initiation and progression of multiple human diseases, ranging from cancer to inflammatory and metabolic diseases, including diabetes mellitus and its vascular complications. The present article aimed to review the current knowledge on the biogenesis and functions of circRNAs, as well as their role in cell processes associated with diabetic nephropathy. In addition, novel potential interactions between circRNAs expressed in renal cells exposed to highglucose concentrations and the transcription factors cJun and cFos are reported.
Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Neoplasias , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Nefropatias Diabéticas/genética , RNA/genética , Neoplasias/genética , Regulação da Expressão GênicaRESUMO
Previous studies have shown that overexpression of the Trypanosoma cruzi U-rich RNA-binding protein 1 (TcUBP1) in insect-dwelling epimastigotes results in a gene expression pattern resembling that of the infective form of the pathogen. Here, we used CRISPR-Cas9-induced edition of TcUBP1 and full-length protein overexpression in epimastigote cells to monitor transcriptomic changes during the epimastigote-to-metacyclic trypomastigote stage transition of T. cruzi. This dataset includes the bioinformatics analysis of three different RNA-seq samples, each with three biological replicates, showing differential mRNA abundances. The current transcriptome report has the potential to shed light on the quantitative variances in the expression of significant up- or down-regulated mRNAs as a consequence of the levels of the UBP1 protein. Raw data files were deposited at the NCBI Sequence Read Archive - SRA at http://ncbi.nlm.nih.gov/Traces/sra/sra.cgi with accession numbers PRJNA907231 and PRJNA949967.
RESUMO
Post-transcriptional regulation of gene expression is a critical process for adapting to and surviving Trypanosoma cruzi, a parasite with a complex life cycle. RNA-binding proteins (RBPs) are key players in this regulation, forming ribonucleoprotein complexes (messenger ribonucleoproteins) and RNA granules that control transcript stability, localization, degradation, and translation modulation. Understanding the specific roles of individual RBPs is crucial for unraveling the details of this regulatory network. In this study, we generated null mutants of the TcZC3HTTP gene, a specific RBP in the Trypanosoma family characterized by a C3H zinc finger and a DNAJ domain associated with RNA and protein binding, respectively. Through cell growth assays, we demonstrated that the absence of TcZC3HTTP or the expression of an additional tagged version impacted epimastigote growth, indicating its contribution to cell proliferation. TcZC3HTTP was found to associate with mRNAs involved in cell cycle and division in epimastigotes, while in nutritionally stressed parasites it exhibited associations with mRNAs coding for other RBPs and rRNA. Furthermore, our analysis identified that TcZC3HTTP protein partners were different during normal growth conditions compared to starvation conditions, with the latter showing enrichment of ribosomal proteins and other RBPs. Therefore, this study provides insights into TcZC3HTTP's role in the post-transcriptional regulation of gene expression during normal growth and nutritional stress in T. cruzi, uncovering its versatile functions in different cellular contexts.IMPORTANCEUnderstanding how Trypanosoma cruzi, the causative agent of Chagas disease, regulates gene expression is crucial for developing targeted interventions. In this study, we investigated the role of TcZC3HTTP, an RNA-binding protein, in post-transcriptional regulation. Our findings demonstrate that TcZC3HTTP is relevant for the growth and proliferation of epimastigotes, a stage of the parasite's life cycle. We identified its associations with specific mRNAs involved in cell cycle and division and its interactions with enzymes and other RNA-binding proteins (RBPs) under normal and starvation conditions. These insights shed light on the regulatory network underlying gene expression in T. cruzi and reveal the multifaceted functions of RBPs in this parasite. Such knowledge enhances our understanding of the parasite's biology and opens avenues for developing novel therapeutic strategies targeting post-transcriptional gene regulation in T. cruzi.
Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Doença de Chagas/parasitologia , RNA/metabolismo , RNA Mensageiro/metabolismo , Proliferação de Células , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismoRESUMO
Rotavirus infection is a leading cause of gastroenteritis in children worldwide; the genome of this virus is composed of 11 segments of dsRNA packed in a triple-layered protein capsid. Here, we investigated the role of nucleolin, a protein with diverse RNA-binding domains, in rotavirus infection. Knocking down the expression of nucleolin in MA104 cells by RNA interference resulted in a remarkable 6.3-fold increase in the production of infectious rhesus rotavirus (RRV) progeny, accompanied by an elevated synthesis of viral mRNA and genome copies. Further analysis unveiled an interaction between rotavirus segment 10 (S10) and nucleolin, potentially mediated by G-quadruplex domains on the viral genome. To determine whether the nucleolin-RNA interaction regulates RRV replication, MA104 cells were transfected with AGRO100, a compound that forms G4 structures and selectively inhibits nucleolin-RNA interactions by blocking the RNA-binding domains. Under these conditions, viral production increased by 1.5-fold, indicating the inhibitory role of nucleolin on the yield of infectious viral particles. Furthermore, G4 sequences were identified in all 11 RRV dsRNA segments, and transfection of oligonucleotides representing G4 sequences in RRV S10 induced a significant increase in viral production. These findings show that rotavirus replication is negatively regulated by nucleolin through the direct interaction with the viral RNAs by sequences forming G4 structures.IMPORTANCEViruses rely on cellular proteins to carry out their replicative cycle. In the case of rotavirus, the involvement of cellular RNA-binding proteins during the replicative cycle is a poorly studied field. In this work, we demonstrate for the first time the interaction between nucleolin and viral RNA of rotavirus RRV. Nucleolin is a cellular protein that has a role in the metabolism of ribosomal rRNA and ribosome biogenesis, which seems to have regulatory effects on the quantity of viral particles and viral RNA copies of rotavirus RRV. Our study adds a new component to the current model of rotavirus replication, where cellular proteins can have a negative regulation on rotavirus replication.
Assuntos
Nucleolina , RNA Viral , Infecções por Rotavirus , Rotavirus , Humanos , Nucleolina/metabolismo , RNA Viral/genética , Rotavirus/fisiologia , Infecções por Rotavirus/virologia , Replicação ViralRESUMO
RNA-binding proteins (RBPs) are essential for regulating RNA metabolism, stability, and translation within cells. Recent studies have shown that RBPs are not restricted to intracellular functions and can be found in extracellular vesicles (EVs) in different mammalian cells. EVs released by fungi contain a variety of proteins involved in RNA metabolism. These include RNA helicases, which play essential roles in RNA synthesis, folding, and degradation. Aminoacyl-tRNA synthetases, responsible for acetylating tRNA molecules, are also enriched in EVs, suggesting a possible link between these enzymes and tRNA fragments detected in EVs. Proteins with canonical RNA-binding domains interact with proteins and RNA, such as the RNA Recognition Motif (RRM), Zinc finger, and hnRNP K-homology (KH) domains. Polyadenylate-binding protein (PABP) plays a critical role in the regulation of gene expression by binding the poly(A) tail of messenger RNA (mRNA) and facilitating its translation, stability, and localization, making it a key factor in post-transcriptional control of gene expression. The presence of proteins related to the RNA life cycle in EVs from different fungal species suggests a conserved mechanism of EV cargo packing. Various models have been proposed for selecting RNA molecules for release into EVs. Still, the actual loading processes are unknown, and further molecular characterization of these proteins may provide insight into the mechanism of RNA sorting into EVs. This work reviews the current knowledge of RBPs and proteins related to RNA metabolism in EVs derived from distinct fungi species, and presents an analysis of proteomic datasets through GO term and orthology analysis, Our investigation identified orthologous proteins in fungal EVs on different fungal species.
Assuntos
Vesículas Extracelulares , RNA , Animais , RNA/análise , Proteômica , RNA Mensageiro/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Mamíferos/genéticaRESUMO
The Basidiomycete fungus Ustilago maydis is a biotrophic pathogen of maize. The U. maydis UmRrm75 gene encodes an RNA-binding protein (RBP). In a previous study, we reported that ΔUmRrm75 null mutant strains accumulate H2O2, exhibit slow growth, and have decreased virulence in maize. Herein, we describe UmRrm75 as an ortholog of the ScHrb1, a serine-arginine (SR) protein identified in the yeast Saccharomyces cerevisiae, which plays a role in nuclear quality control, specifically in mRNA splicing and export processes. The yeast ScHrb1 mutant (ΔScHrb1) exhibits an increased sensitivity to elevated levels of boron. We noticed that the ΔScHrb1 displayed sensitivity to H2O2, which is consistent with previous findings in the ΔUmRrm75 mutant. We reversed the sensitivity phenotypes of boron and H2O2 by introducing the UmRrm75 gene into the ΔScHrb1 mutant. Furthermore, we generated complementary strains of U. maydis by expressing UmRrm75-GFP under its native promoter in the ∆UmRrm75 mutants. The UmRrm75-GFP/∆UmRrm75 complementary strains successfully recovered their growth capability under stressors, H2O2 and boron, resembling the parental strains FB2 and AB33. The subcellular localization experiments conducted in U. maydis revealed that the UmRrm75 protein is localized within the nucleus of both yeast and hyphae. The nuclear localization of the UmRrm75 protein remains unaltered even under conditions of heat or oxidative stress. This suggests that UmRrm75 might perform its RBP activity in the nucleus, as previously reported for ScHrb1. Our data contribute to understanding the role of the nuclear RBP UmRrm75 from the corn smut fungus U. maydis.
RESUMO
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
RESUMO
Groups (Grp) 3 and 4 are aggressive molecular subgroups of medulloblastoma (MB), with high rates of leptomeningeal dissemination. To date, there is still a paucity of biomarkers for these subtypes of MBs. In this study, we investigated the clinical significance and biological functions of Musashi-1 (MSI1) in Grp3 and Grp4-MBs. First, we assessed the expression profile of MSI1 in 59 primary MB samples (15-WNT, 18-SHH, 9-Grp3, and 17-Grp4 subgroups) by qRT-PCR. MSI1 mRNA expression levels were also validated in an additional public dataset of MBs (GSE85217). The ROC curve was used to validate the diagnostic standards of MSI1 expression. Next, the potential correlated cell-cycle genes were measured by RNA-Seq. Cell cycle, cell viability, and apoptosis were evaluated in a Grp3/Grp4 MB cell line after knockdown of MSI1 and cisplatin treatment. We identified an overexpression of MSI1 with a high accuracy to discriminate Grp3/Grp4-MBs from non-Grp3/Grp4-MBs. We identified that MSI1 knockdown not only triggered transcriptional changes in the cell-cycle pathway, but also affected G2/M phase in vitro, supporting the role of knockdown of MSI1 in cell-cycle arrest. Finally, MSI1 knockdown decreased cell viability and sensitized D283-Med cells to cisplatin treatment by enhancing cell apoptosis. Based on these findings, we suggest that MSI1 modulates cell-cycle progression and may play a role as biomarker for Grp3/Grp4-MBs. In addition, MSI1 knockdown combined with cisplatin may offer a potential strategy to be further explored in Grp3/Grp4-MBs.
RESUMO
Colorectal adenocarcinoma (COREAD) is the second most deadly cancer and third most frequently encountered malignancy worldwide. Despite efforts in molecular subtyping and subsequent personalized COREAD treatments, multidisciplinary evidence suggests separating COREAD into colon cancer (COAD) and rectal cancer (READ). This new perspective could improve diagnosis and treatment of both carcinomas. RNA-binding proteins (RBPs), as critical regulators of every hallmark of cancer, could fulfill the need to identify sensitive biomarkers for COAD and READ separately. To detect new RBPs involved in COAD and READ progression, here we used a multidata integration strategy to prioritize tumorigenic RBPs. We analyzed and integrated 1) RBPs genomic and transcriptomic alterations from 488 COAD and 155 READ patients, 2) â¼ 10,000 raw associations between RBPs and cancer genes, 3) â¼ 15,000 immunostainings, and 4) loss-of-function screens performed in 102 COREAD cell lines. Thus, we unraveled new putative roles of NOP56, RBM12, NAT10, FKBP1A, EMG1, and CSE1L in COAD and READ progression. Interestingly, FKBP1A and EMG1 have never been related with any of these carcinomas but presented tumorigenic features in other cancer types. Subsequent survival analyses highlighted the clinical relevance of FKBP1A, NOP56, and NAT10 mRNA expression to predict poor prognosis in COREAD and COAD patients. Further research should be performed to validate their clinical potential and to elucidate their molecular mechanisms underlying these malignancies.
RESUMO
The exon junction complex (EJC) plays key roles throughout the lifespan of RNA and is particularly relevant in the nervous system. We investigated the roles of two EJC members, the paralogs MAGOH and MAGOHB, with respect to brain tumour development. High MAGOH/MAGOHB expression was observed in 14 tumour types; glioblastoma (GBM) showed the greatest difference compared to normal tissue. Increased MAGOH/MAGOHB expression was associated with poor prognosis in glioma patients, while knockdown of MAGOH/MAGOHB affected different cancer phenotypes. Reduced MAGOH/MAGOHB expression in GBM cells caused alterations in the splicing profile, including re-splicing and skipping of multiple exons. The binding profiles of EJC proteins indicated that exons affected by MAGOH/MAGOHB knockdown accumulated fewer complexes on average, providing a possible explanation for their sensitivity to MAGOH/MAGOHB knockdown. Transcripts (genes) showing alterations in the splicing profile are mainly implicated in cell division, cell cycle, splicing, and translation. We propose that high MAGOH/MAGOHB levels are required to safeguard the splicing of genes in high demand in scenarios requiring increased cell proliferation (brain development and GBM growth), ensuring efficient cell division, cell cycle regulation, and gene expression (splicing and translation). Since differentiated neuronal cells do not require increased MAGOH/MAGOHB expression, targeting these paralogs is a potential option for treating GBM.
Assuntos
Genes cdc , Glioblastoma , Humanos , Splicing de RNA , Divisão Celular , Núcleo Celular/metabolismo , Glioblastoma/metabolismo , Proteínas Nucleares/metabolismoRESUMO
Trichomonas vaginalis is one of the most common sexually transmitted parasites in humans. This protozoan has high iron requirements for growth, metabolism, and virulence. However, iron concentrations also differentially modulate T. vaginalis gene expression as in the genes encoding cysteine proteinases TvCP4 and TvCP12. Our goal was to identify the regulatory mechanism mediating the upregulation of tvcp12 under iron-restricted (IR) conditions. Here, we showed by RT-PCR, Western blot, and immunocytochemistry assays that IR conditions increase mRNA stability and amount of TvCP12. RNA electrophoretic mobility shift assay (REMSA), UV cross-linking, and competition assays demonstrated that a non-canonical iron-responsive element (IRE)-like structure at the 3'-untranslated region of the tvcp12 transcript (IRE-tvcp12) specifically binds to human iron regulatory proteins (IRPs) and to atypical RNA-binding cytoplasmic proteins from IR trichomonads, such as HSP70 and α-Actinin 3. These data were confirmed by REMSA supershift and Northwestern blot assays. Thus, our findings show that a positive gene expression regulation under IR conditions occurs at the posttranscriptional level possibly through RNA-protein interactions between atypical RNA-binding proteins and non-canonical IRE-like structures at the 3'-UTR of the transcript by a parallel mechanism to the mammalian IRE/IRP system that can be applied to other iron-regulated genes of T. vaginalis.
RESUMO
Human resistance protein R (HuR), also known as embryonic lethal abnormal visual-like protein (ELAVL1), is an RNA-binding protein widely expressed in vivo that affects the mRNA stability of targeted and is involved in post-transcriptional regulation. Recent studies have shown that HuR is aberrantly expressed in different human cancers and is an essential factor in poor clinical prognosis. The role of HuR in numerous tumors suggests that it could be a new target for tumor therapy and as a marker for efficacy and prognostic assessment. This review focuses on the relationship between HuR and drug resistance in different tumors and briefly describes the structure, function, and inhibitors of HuR. We summarize the mechanisms by which HuR causes tumor resistance and the molecular targets affected.
Assuntos
Proteína Semelhante a ELAV 1 , Neoplasias , Humanos , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Regulação da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , PrognósticoRESUMO
The scale of post-transcriptional regulation and the implications of its interplay with other forms of regulation in environmental acclimation are underexplored for organisms of the domain Archaea. Here, we have investigated the scale of post-transcriptional regulation in the extremely halophilic archaeon Halobacterium salinarum NRC-1 by integrating the transcriptome-wide locations of transcript processing sites (TPSs) and SmAP1 binding, the genome-wide locations of antisense RNAs (asRNAs), and the consequences of RNase_2099C knockout on the differential expression of all genes. This integrated analysis has discovered that 54% of all protein-coding genes in the genome of this haloarchaeon are likely targeted by multiple mechanisms for putative post-transcriptional processing and regulation, with about 20% of genes likely being regulated by combinatorial schemes involving SmAP1, asRNAs, and RNase_2099C. Comparative analysis of mRNA levels (transcriptome sequencing [RNA-Seq]) and protein levels (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry [SWATH-MS]) for 2,579 genes over four phases of batch culture growth in complex medium generated additional evidence for the conditional post-transcriptional regulation of 7% of all protein-coding genes. We demonstrate that post-transcriptional regulation may act to fine-tune specialized and rapid acclimation to stressful environments, e.g., as a switch to turn on gas vesicle biogenesis to promote vertical relocation under anoxic conditions and modulate the frequency of transposition by insertion sequence (IS) elements of the IS200/IS605, IS4, and ISH3 families. Findings from this study are provided as an atlas in a public Web resource (https://halodata.systemsbiology.net). IMPORTANCE While the transcriptional regulation landscape of archaea has been extensively investigated, we currently have limited knowledge about post-transcriptional regulation and its driving mechanisms in this domain of life. In this study, we collected and integrated omics data from multiple sources and technologies to infer post-transcriptionally regulated genes and the putative mechanisms modulating their expression at the protein level in Halobacterium salinarum NRC-1. The results suggest that post-transcriptional regulation may drive environmental acclimation by regulating hallmark biological processes. To foster discoveries by other research groups interested in the topic, we extended our integrated data to the public in the form of an interactive atlas (https://halodata.systemsbiology.net).
Assuntos
Archaea , Transcriptoma , Humanos , Archaea/genética , Transcriptoma/genética , Genoma , RNA Antissenso/genética , Ribonucleases/genéticaRESUMO
Fijiviruses replicate and package their genomes within viroplasms in a process involving RNA-RNA and RNA-protein interactions. Here, we demonstrate that the 24 C-terminal residues (C-arm) of the P9-1 major viroplasm protein of the mal de Río Cuarto virus (MRCV) are required for its multimerization and the formation of viroplasm-like structures. Using an integrative structural approach, the C-arm was found to be dispensable for P9-1 dimer assembly but essential for the formation of pentamers and hexamers of dimers (decamers and dodecamers), which favored RNA binding. Although both P9-1 and P9-1ΔC-arm catalyzed ATP with similar activities, an RNA-stimulated ATPase activity was only detected in the full-length protein, indicating a C-arm-mediated interaction between the ATP catalytic site and the allosteric RNA binding sites in the (do)decameric assemblies. A stronger preference to bind phosphate moieties in the decamer was predicted, suggesting that the allosteric modulation of ATPase activity by RNA is favored in this structural conformation. Our work reveals the structural versatility of a fijivirus major viroplasm protein and provides clues to its mechanism of action. IMPORTANCE The mal de Río Cuarto virus (MRCV) causes an important maize disease in Argentina. MRCV replicates in several species of Gramineae plants and planthopper vectors. The viral factories, also called viroplasms, have been studied in detail in animal reovirids. This work reveals that a major viroplasm protein of MRCV forms previously unidentified structural arrangements and provides evidence that it may simultaneously adopt two distinct quaternary assemblies. Furthermore, our work uncovers an allosteric communication between the ATP and RNA binding sites that is favored in the multimeric arrangements. Our results contribute to the understanding of plant reovirids viroplasm structure and function and pave the way for the design of antiviral strategies for disease control.
Assuntos
Reoviridae , Compartimentos de Replicação Viral , Animais , RNA/metabolismo , Reoviridae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
BACKGROUND: Developmental cardiac tissue holds remarkable capacity to regenerate after injury and consists of regenerative mononuclear diploid cardiomyocytes. On maturation, mononuclear diploid cardiomyocytes become binucleated or polyploid and exit the cell cycle. Cardiomyocyte metabolism undergoes a profound shift that coincides with cessation of regeneration in the postnatal heart. However, whether reprogramming metabolism promotes persistence of regenerative mononuclear diploid cardiomyocytes enhancing cardiac function and repair after injury is unknown. Here, we identify a novel role for RNA-binding protein LIN28a, a master regulator of cellular metabolism in cardiac repair after injury. METHODS: LIN28a overexpression was tested using mouse transgenesis on postnatal cardiomyocyte numbers, cell cycle, and response to apical resection injury. With the use of neonatal and adult cell culture systems and adult and Mosaic Analysis with Double Markers myocardial injury models in mice, the effect of LIN28a overexpression on cardiomyocyte cell cycle and metabolism was tested. Last, isolated adult cardiomyocytes from LIN28a and wild-type mice 4 days after myocardial injury were used for RNA-immunoprecipitation sequencing. RESULTS: LIN28a was found to be active primarily during cardiac development and rapidly decreases after birth. LIN28a reintroduction at postnatal day (P) 1, P3, P5, and P7 decreased maturation-associated polyploidization, nucleation, and cell size, enhancing cardiomyocyte cell cycle activity in LIN28a transgenic pups compared with wild-type littermates. Moreover, LIN28a overexpression extended cardiomyocyte cell cycle activity beyond P7 concurrent with increased cardiac function 30 days after apical resection. In the adult heart, LIN28a overexpression attenuated cardiomyocyte apoptosis, enhanced cell cycle activity, cardiac function, and survival in mice 12 weeks after myocardial infarction compared with wild-type littermate controls. Instead, LIN28a small molecule inhibitor attenuated the proreparative effects of LIN28a on the heart. Neonatal rat ventricular myocytes overexpressing LIN28a mechanistically showed increased glycolysis, ATP production, and levels of metabolic enzymes compared with control. LIN28a immunoprecipitation followed by RNA-immunoprecipitation sequencing in cardiomyocytes isolated from LIN28a-overexpressing hearts after injury identified long noncoding RNA-H19 as its most significantly altered target. Ablation of long noncoding RNA-H19 blunted LIN28a-induced enhancement on cardiomyocyte metabolism and cell cycle activity. CONCLUSIONS: Collectively, LIN28a reprograms cardiomyocyte metabolism and promotes persistence of mononuclear diploid cardiomyocytes in the injured heart, enhancing proreparative processes, thereby linking cardiomyocyte metabolism to regulation of ploidy/nucleation and repair in the heart.