Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pract Lab Med ; 31: e00278, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35733419

RESUMO

In recent decades, clinical research on early biomarkers of renal injury has been frequent and intensive, with proenkephalin (PENK) being indicated as a promising filtration biomarker (BM). From a cohort of 57 patients, blood samples were collected preoperatively and 48 h after liver transplantation (LT). The following BMs were analyzed: PENK, cystatin-C (CYS-C), and serum creatinine (Scr). Diagnosis of AKI was based on the KDIGO criteria. Of the 57 patients undergoing LT, 50 (88%) developed acute kidney injury (AKI) and were categorized as follows: no-AKI/mild-AKI - 21 (36.8%) and severe-AKI 36 (63.2%). During the preoperative period, only PENK was significantly higher in patients with severe AKI, with an AUC of 0.69 (CI 0.54-0.83), a cutoff of 55.30 pmol/l, a sensitivity of 0.86, a specificity of 0.52, and an accuracy of 0.75. In addition, subclinical AKI was determined preoperatively in 32 patients. Forty-eight hours after LT, PENK maintained its performance in determining severe AKI, with an AUC of 0.83 (CI 0.72-0.94), a cutoff of 119.05 pmol/l, a sensitivity of 0.81, a specificity of 0.90, and an accuracy of 0.84. PENK detected AKI 48 h earlier than serum creatinine. In a multivariate linear regression analysis, PENK was an independent predictor of severe AKI. This small study suggests that the filtration biomarker PENK shows promise for detecting AKI in patients undergoing LT, revealing greater accuracy and an earlier rise in patients with severe AKI. The combination of kidney functional and filtration BMs may aid in the management and prevention of AKI progression.

2.
Peptides ; 115: 32-42, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836111

RESUMO

Stem bromelain [EC 3.4.22.32] is a thiol-endopeptidase and orally recommended in traditional medicine due to its analgesic activity, but the mechanisms are not known. Proenkephalin is expressed in the nervous system, but also in the gastrointestinal tract, where it can be assessed by ingested stem bromelain. Here we demonstrated that stem bromelain hydrolyses synthetic proenkephalin fragments after basic amino acid residues flanking the enkephalin sequences. We also observed with in vivo studies that oral administration of bromelain reduced jejunum proenkephalin levels and increased the serum enkephalin in mice. Effective anti-nociceptive effects in mice were observed 3 h after oral administration of 3 mg/kg stem bromelain by the acetic acid-induced writhing test. However, with higher doses this effect is reduced due to hydrolysis of enkephalin that possibly occurs by the presence of ananain in commercial pineapple stem bromelain preparations, that is also a thiol-protease with broad specificity. The analgesic effects were also evaluated by hot-plate and formalin tests and the obtained results indicated that enkephalin generated in intestine acts in periphery where it also can have anti-inflammatory activity.


Assuntos
Anti-Inflamatórios/metabolismo , Bromelaínas/farmacologia , Encefalinas/metabolismo , Jejuno/metabolismo , Precursores de Proteínas/metabolismo , Administração Oral , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C
3.
Addict Biol ; 21(2): 326-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25431310

RESUMO

Behavioral sensitization to cocaine is associated to neuroadaptations that contribute to addiction. Enkephalin is highly expressed in mesocorticolimbic areas associated with cocaine-induced sensitization; however, their influence on cocaine-dependent behavioral and neuronal plasticity has not been explained. In this study, we employed a knockout (KO) model to investigate the contribution of enkephalin in cocaine-induced behavioral sensitization. Wild-type (WT) and proenkephalin KO mice were treated with cocaine once daily for 9 days to induce sensitization. Additionally, to clarify the observations in KO mice, the same procedure was applied in C57BL/6 mice, except that naloxone was administered before each cocaine injection. All animals received a cocaine challenge on days 15 and 21 of the treatment to evaluate the expression of locomotor sensitization. On day 21, microdialysis measures of accumbal extracellular dopamine, Western blotting for GluR1 AMPA receptor (AMPAR), phosphorylated ERK2 (pERK2), CREB (pCREB), TrKB (pTrkB) were performed in brain areas relevant for sensitization from KO and WT and/or naloxone- and vehicle pre-treated animals. We found that KO mice do not develop sensitization to the stimulating properties of cocaine on locomotor activity and on dopamine release in the nucleus accumbens (NAc). Furthermore, pivotal neuroadaptations such as the increase in pTrkB receptor, pERK/CREB and AMPAR related to sensitized responses were absent in the NAc from KO mice. Consistently, full abrogation of cocaine-induced behavioral and neuronal plasticity after naloxone pre-treatment was observed. We show for first time that the proenkephalin system is essential in regulating long-lasting pivotal neuroadaptations in the NAc underlying behavioral sensitization to cocaine.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Encefalinas/farmacologia , Neurotransmissores/farmacologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA