Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Br Poult Sci ; : 1-6, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39257343

RESUMO

1. Salmonella Gallinarum strains isolated from a southern Brazil fowl typhoid outbreak were subjected to phenotypic and genotypic analyses to identify genetic elements that could improve prevention and control strategies.2. Whole-genome sequencing revealed the presence of the aac(6')-Iaa gene, conferring aminoglycoside resistance, along with novel chromosomal point mutations, including the first detection of parE p.S451F in Salmonella Gallinarum.3. Additionally, IncFII(S) plasmid replicons, Salmonella pathogenicity islands and 105 virulence genes associated with cell adhesion, invasion and antimicrobial peptide resistance were identified.4. These findings shed light on the molecular mechanisms of fowl typhoid and provide crucial insights into emerging antimicrobial resistance and virulence factors.

2.
Curr Issues Mol Biol ; 46(6): 5909-5928, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921024

RESUMO

Uropathogenic Escherichia coli (UPEC) is the main cause of urinary tract infections (UTIs) and carries virulence and resistance factors often found in mobilizable genetic elements, such as plasmids or pathogenicity islands (PAIs). UPEC is part of the extraintestinal pathogenic E. coli (ExPEC), but hybrid strains possessing both diarrheagenic E. coli (DEC) and ExPEC traits, termed "hypervirulent", present a significant health threat. This study assessed the prevalence of UPEC PAIs, ExPEC sequence types (ST), DEC genes, carbapenemase and extended-spectrum ß-lactamase (ESBL) phenotypes, resistance genotypes, and plasmids in 40 clinical isolates of UPEC. Results showed that 72.5% of isolates had PAIs, mainly PAI IV536 (53%). ESBL phenotypes were found in 65% of ß-lactam-resistant isolates, with 100% of carbapenem-resistant isolates producing carbapenemase. The predominant ESBL gene was blaCTX-M-2 (60%), and the most common resistance gene in fluoroquinolone and aminoglycoside-resistant isolates was aac(6')Ib (93%). Plasmids were present in 57% of isolates, and 70% belonged to the ST131 clonal group. Molecular markers for DEC pathotypes were detected in 20 isolates, with 60% classified as hybrid pathotypes. These findings indicate significant pathogenic potential and the presence of hybrid pathotypes in E. coli UTI clinical isolates in the Mexican population.

3.
Braz J Microbiol ; 55(1): 955-967, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265572

RESUMO

Mastitis caused by Staphylococcus aureus is a worldwide problem in dairy farms, in part because of the pathogenicity of the bacteria, biofilm formation, and mechanisms of antimicrobial resistance that make the disease difficult to diagnose and treat, which is typically done with the use of beta-lactam antibiotics. The aim of the present study was to determine the virulence and resistance factors of S. aureus isolates from subclinical mastitis, blaZ + /mecA - /mecC - , resistant and sensitive to oxacillin. All isolates were classified as CC97 by MLST analysis, a clonal complex well adapted to the mammary gland and although STAU23 and STAU73 were resistant to oxacillin while STAU32 and STAU78 were sensitive, the genomic analysis identified only the blaZ operon corresponding to resistance to beta-lactams. However, the presence of the sdrC gene was revealed exclusively in resistant isolates, an important adhesin in the colonization process that potentiates pathogenicity in S. aureus. In addition, resistance islands (REIs) were identified in these isolates, suggesting more conserved REIs. In the analysis of SNPs throughout the genome, mutations were found in the trmB and smpB genes of the resistant isolates and in the murD and rimM genes of the sensitive isolates. This study highlights the potential benefit of genome-wide characterization tools to identify molecular mechanisms of S. aureus in bovine mastitis.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Animais , Bovinos , Feminino , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Virulência/genética , Tipagem de Sequências Multilocus , Testes de Sensibilidade Microbiana , Mastite Bovina/microbiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Oxacilina
4.
Braz J Microbiol ; 55(1): 1-9, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38036848

RESUMO

Uropathogenic Escherichia coli (UPEC) have the potential to receive the virulence markers of intestinal pathotypes and transform into various important hybrid pathotypes. This study aimed to investigate the frequency and characteristics of hybrid enteroaggregative E. coli (EAEC)/UPEC strains. Out of 202 UPEC strains, nine (4.5%) were detected as hybrid EAEC/UPEC. These strains carried one to four iron uptake systems. Among nine investigated pathogenicity islands (PAIs), PAI IV536, PAI II536, and PAI ICFT073 were found in 9 (100%), 3 (33.3%), and 1 (11.1%) strains, respectively. The chuA and sitA genes were detected in 5 (55.5%) and 3 (33.3%) hybrid strains, respectively. Six hybrid strains were found to be typical extraintestinal pathogenic E. coli (ExPEC) according to their virulence traits. Most of the hybrid strains belonged to the phylogenetic group E (6/9). Among the hybrid strains, seven (7/9) were able to form biofilm and adhere to cells; however, only two strains penetrated into the HeLa cells. Our findings reveal some of the virulence characteristics of hybrid strains that lead to fitness and infection in the urinary tract. These strains, with virulence factors of intestinal and non-intestinal pathotypes, may become emerging pathogens in clinical settings; therefore, further studies are needed to reveal their pathogenicity mechanisms and so that preventive measures can be taken.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Filogenia , Células HeLa , Fatores de Virulência/genética , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Uropatogênica/genética , Infecções Urinárias/microbiologia , Proteínas de Escherichia coli/genética
5.
Rev. argent. microbiol ; Rev. argent. microbiol;55(1): 4-10, mar. 2023. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1441180

RESUMO

Resumen Las cepas de Escherichia coli productoras de toxina Shiga (STEC) son reconocidas como responsables de un alto número de casos de enfermedades de transmisión alimentaria a nivel mundial. Su patogenicidad ha sido vinculada directamente con la actividad de las toxinas (Stx); sin embargo, la habilidad de estas bacterias para colonizar al huésped y otras superficies puede ser esencial para desarrollar su poder patogénico. La gran plasticidad genómica de cepas STEC se infiere de la variabilidad de perfiles de virulencia, con la frecuente emergencia de cepas con nuevos genes, codificados en nuevas islas de patogenicidad vinculadas al metabolismo y la adherencia. La formación de biofilm es un mecanismo espontáneo por el cual las cepas STEC resisten en un ambiente hostil, lo que les permite sobrevivir y, de esa forma, llegar al huésped, a través de los alimentos o de las superficies que están en contacto con ellos. Este mecanismo presenta una alta variabilidad intra e interserotipo y su desarrollo no depende solo de los microorganismos que lo conforman. Factores inherentes al ambiente (pH, temperatura) y la superficie (acero inoxidable, poliestireno) a la que pueden adherirse influyen en la expresión de biofilm. El concepto «una salud¼ implica la interrelación entre los actores de salud pública, animal y ambiental para lograr alimentos inocuos y evitar contaminación cruzada y resistencia a sanitizantes, lo cual pone de manifiesto la necesidad de identificar patógenos emergentes a través de nuevos marcadores moleculares, que detecten cepas STEC portadoras del denominado locus for enterocyte effacement (LEE) o del locus de adherencia y autoagregación (LAA).


Abstract Shiga Toxin-producing Escherichia coli (STEC) is recognized as being responsible for a large number of foodborne illnesses around the world. The pathogenicity of STEC has been related to Stx toxins. However, the ability of STEC to colonize the host and other surfaces can be essential for developing its pathogenicity. Different virulence profiles detected in STEC could cause the emergence of strains carrying new genes codified in new pathogenicity islands linked to metabolism and adherence. Biofilm formation is a spontaneous mechanism whereby STEC strains resist in a hostile environment being able to survive and consequently infect the host through contaminated food and food contact surfaces. Biofilm formation shows intra-and inter-serotype variability, and its formation does not depend only on the microorganisms involved. Other factors related to the environment (such as pH, temperature) and the surface (stainless steel and polystyrene) influence biofilm expression. The «One Health¼ concept implies the interrelation between public, animal, and environmental health actors to ensure food safety, prevent cross-contamination and resistance to sanitizers, highlighting the need to identify emerging pathogens through new molecular markers of rapid detection that involve STEC strains carrying the Locus of Enterocyte Effacement or Locus of Adhesion and Autoaggregation.

6.
Rev Argent Microbiol ; 55(1): 100-107, 2023.
Artigo em Espanhol | MEDLINE | ID: mdl-35676186

RESUMO

Shiga Toxin-producing Escherichia coli (STEC) is recognized as being responsible for a large number of foodborne illnesses around the world. The pathogenicity of STEC has been related to Stx toxins. However, the ability of STEC to colonize the host and other surfaces can be essential for developing its pathogenicity. Different virulence profiles detected in STEC could cause the emergence of strains carrying new genes codified in new pathogenicity islands linked to metabolism and adherence. Biofilm formation is a spontaneous mechanism whereby STEC strains resist in a hostile environment being able to survive and consequently infect the host through contaminated food and food contact surfaces. Biofilm formation shows intra-and inter-serotype variability, and its formation does not depend only on the microorganisms involved. Other factors related to the environment (such as pH, temperature) and the surface (stainless steel and polystyrene) influence biofilm expression. The «One Health¼ concept implies the interrelation between public, animal, and environmental health actors to ensure food safety, prevent cross-contamination and resistance to sanitizers, highlighting the need to identify emerging pathogens through new molecular markers of rapid detection that involve STEC strains carrying the Locus of Enterocyte Effacement or Locus of Adhesion and Autoaggregation.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Animais , Escherichia coli Shiga Toxigênica/genética , Virulência/genética , Biofilmes , Fatores de Virulência/genética , Ilhas Genômicas/genética , Proteínas de Escherichia coli/genética
7.
Front Cell Infect Microbiol ; 12: 772829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795189

RESUMO

Since its emergence in the beginning of the 90's, multidrug-resistant (MDR) Salmonella enterica subsp. enterica serovar Kentucky has become a significant public health problem, especially in East Africa. This study aimed to investigate the antimicrobial resistance profile and the genotypic relatedness of Salmonella Kentucky isolated from animal sources in Ethiopia and Kenya (n=19). We also investigated population evolutionary dynamics through phylogenetic and pangenome analyses with additional publicly available Salmonella Kentucky ST198 genomes (n=229). All the 19 sequenced Salmonella Kentucky isolates were identified as ST198. Among these isolates, the predominant genotypic antimicrobial resistance profile observed in ten (59.7%) isolates included the aac(3)-Id, aadA7, strA-strB, blaTEM-1B, sul1, and tet(A) genes, which mediated resistance to gentamicin, streptomycin/spectinomycin, streptomycin, ampicillin, sulfamethoxazole and tetracycline, respectively; and gyrA and parC mutations associated to ciprofloxacin resistance. Four isolates harbored plasmid types Incl1 and/or Col8282; two of them carried both plasmids. Salmonella Pathogenicity islands (SPI-1 to SPI-5) were highly conserved in the 19 sequenced Salmonella Kentucky isolates. Moreover, at least one Pathogenicity Island (SPI 1-4, SPI 9 or C63PI) was identified among the 229 public Salmonella Kentucky genomes. The phylogenetic analysis revealed that almost all Salmonella Kentucky ST198 isolates (17/19) stemmed from a single strain that has accumulated ciprofloxacin resistance-mediating mutations. A total of 8,104 different genes were identified in a heterogenic and still open Salmonella Kentucky ST198 pangenome. Considering the virulence factors and antimicrobial resistance genes detected in Salmonella Kentucky, the implications of this pathogen to public health and the epidemiological drivers for its dissemination must be investigated.


Assuntos
Salmonella enterica , Animais , Antibacterianos/farmacologia , Ciprofloxacina , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Kentucky , Gado , Filogenia , Salmonella enterica/genética , Sorogrupo , Estreptomicina
8.
J Biomol Struct Dyn ; 40(16): 7496-7510, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33719856

RESUMO

The genus Rickettsia belongs to the Proteobacteria phylum and these bacteria infect animals and humans causing a range of diseases worldwide. The genus is divided into 4 groups and despite the public health threat and the knowledge accumulated so far, the mandatory intracellular bacteria behaviour and limitation for in vitro culture makes it difficult to create new vaccines and drug targets to these bacteria. In an attempt to overcome these limitations, pan-genomic approaches has used 47 genomes of the genus Rickettsia, in order to describe species similarities and genomics islands. Moreover, we conducted reverse vaccinology and docking analysis aiming the identification of proteins that have great potential to become vaccine and drug targets. We found out that the bacteria of the four Rickettsia groups have a high similarity with each other, with about 90 to 100% of identity. A pathogenicity island and a resistance island were predicted. In addition, 8 proteins were also predicted as strong candidates for vaccine and 9 as candidates for drug targets. The prediction of the proteins leads us to believe in a possibility of prospecting potential drugs or creating a polyvalent vaccine, which could reach most strains of this large group of bacteria.Communicated by Ramaswamy H. Sarma.


Assuntos
Rickettsia , Vacinas , Animais , Genoma Bacteriano/genética , Genômica , Humanos , Rickettsia/genética , Fatores de Virulência/genética
9.
Int J Med Microbiol ; 310(8): 151453, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33045580

RESUMO

Extraintestinal pathogenic E. coli (ExPEC) is the most frequent etiological agent of urinary tract infections (UTIs). Particular evolutionary successful lineages are associated with severe UTIs and higher incidences of multidrug resistance. Most of the resistance genes are acquired by horizontal transfer of plasmids and other mobile genetic elements (MGEs), and this process has been associated with the successful dissemination of particular lineages. Here, we identified the presence of MGEs and their role in virulence and resistance profiles of isolates obtained from the urine of hospitalized patients in Brazil. Isolates belonging to the successful evolutionary lineages of sequence type (ST) 131, ST405, and ST648 were found to be multidrug-resistant, while those belonging to ST69 and ST73 were often not. Among the ST131, ST405, and ST648 isolates with a resistant phenotype, a high number of mainly IncFII plasmids was identified. The plasmids contained resistance cassettes, and these were also found within phage-related sequences and the chromosome of the isolates. The resistance cassettes were found to harbor several resistance genes, including blaCTX-M-15. In addition, in ST131 isolates, diverse pathogenicity islands similar to those found in highly virulent ST73 isolates were detected. Also, a new genomic island associated with several virulence genes was identified in ST69 and ST131 isolates. In addition, several other MGEs present in the ST131 reference strain EC958 were identified in our isolates, most of them exclusively in ST131 isolates. In contrast, genomic islands present in this reference strain were only partially present or completely absent in our ST131 isolates. Of all isolates studied, ST73 and ST131 isolates had the most similar virulence profile. Overall, no clear association was found between the presence of specific MGEs and virulence profiles. Furthermore, the interplay between virulence and resistance by acquiring MGEs seemed to be lineage dependent. Although the acquisition of IncF plasmids, specific PAIs, GIs, and other MGEs seemed to be involved in the success of some lineages, it cannot explain the success of different lineages, also indicating other (host) factors are involved in this process. Nevertheless, the detection, identification, and surveillance of lineage-specific MGEs may be useful to monitor (new) emerging clones.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/patogenicidade , Brasil , Infecções por Escherichia coli/urina , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Humanos , Virulência/genética , beta-Lactamases/genética
10.
Infect Genet Evol ; 80: 104195, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31954181

RESUMO

Streptococcus agalactiae are important pathogenic bacteria that cause severe infections in humans, especially neonates. The mechanism by which ST-17 causes invasive infections than other STs is not well understood. In this study, we sequenced the first genome of a S. agalactiae ST-17 strain isolated in Brazil using the Illumina HiSeq 2500 technology. S. agalactiae GBS90356 ST-17 belongs to the capsular type III and was isolated from a neonatal with a fatal case of meningitis. The genome presented a size of 2.03 Mbp and a G + C content of 35.2%. S. agalactiae has 706 genes in its core genome and an open pan-genome with a size of 5.020 genes, suggesting a high genomic plasticity. GIPSy software was used to identify 10 Pathogenicity islands (PAIs) which corresponded to 15% of the genome size. IslandViewer4 corroborated the prediction of six PAIs. The pathogenicity islands showed important virulence factors genes for S. agalactiae e.g. neu, cps, dlt, fbs, cfb, lmb. SignalP detected 20 proteins with signal peptides among the 352 proteins found in PAIs, which 60% were located in the SagPAI_5. SagPAI_2 and 5 were mainly detected in ST-17 strains studied. Moreover, we identified 51 unique genes, 9 recombination regions and a large number of SNPs with an average of 760.3 polymorphisms, which can be related with high genomic plasticity and virulence during host-pathogen interactions. Our results showed implications for pathogenesis, evolution, concept of species and in silico analysis value to understand the epidemiology and genome plasticity of S. agalactiae.


Assuntos
Genoma Bacteriano , Genômica , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/classificação , Streptococcus agalactiae/genética , Brasil/epidemiologia , Biologia Computacional/métodos , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Filogenia , Vigilância em Saúde Pública , Streptococcus agalactiae/isolamento & purificação , Streptococcus agalactiae/patogenicidade , Virulência/genética , Fatores de Virulência/genética
11.
Lett Appl Microbiol ; 66(4): 352-359, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29397031

RESUMO

Salmonella pathogenicity relies on virulence factors many of which are clustered within the Salmonella pathogenicity islands. Salmonella also harbours mobile genetic elements such as virulence plasmids, prophage-like elements and antimicrobial resistance genes which can contribute to increase its pathogenicity. Here, we have genetically characterized a selected S. Typhimurium strain (CCRJ_26) from our previous study with Multiple Drugs Resistant profile and high-frequency PFGE clonal profile which apparently persists in the pork production centre of Rio de Janeiro State, Brazil. By whole-genome sequencing, we described the strain's genome virulent content and characterized the repertoire of bacterial plasmids, antibiotic resistance genes and prophage-like elements. Here, we have shown evidence that strain CCRJ_26 genome possible represent a virulence-associated phenotype which may be potentially virulent in human infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Whole-genome sequencing technologies are still costly and remain underexplored for applied microbiology in Brazil. Hence, this genomic description of S. Typhimurium strain CCRJ_26 will provide help in future molecular epidemiological studies. The analysis described here reveals a quick and useful pipeline for bacterial virulence characterization using whole-genome sequencing approach.


Assuntos
Genoma Bacteriano/genética , Salmonelose Animal/microbiologia , Salmonella typhimurium/genética , Suínos/microbiologia , Animais , Antibacterianos , Brasil , Farmacorresistência Bacteriana/genética , Ilhas Genômicas/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Prófagos/genética , Carne Vermelha/microbiologia , Salmonella typhimurium/classificação , Salmonella typhimurium/isolamento & purificação , Virulência/genética
12.
Genes (Basel) ; 9(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439390

RESUMO

Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens associated with outbreaks and hemolytic-uremic syndrome. Cattle and meat foods are the main reservoir and infection source, respectively. Pathogenicity islands (PAIs) play an important role in STEC pathogenicity, and non-locus of the enterocyte effacement(LEE) effector (nle) genes present on them encode translocated substrates of the type III secretion system. A molecular risk assessment based on the evaluation of the nle content has been used to predict which STEC strains pose a risk to humans. The goal was to investigate the distribution of the PAIs OI (O-island)-36 (nleB2, nleC, nleH1-1, nleD), OI-57 (nleG2-3, nleG5-2, nleG6-2), OI-71 (nleA, nleF, nleG, nleG2-1, nleG9, nleH1-2) and OI-122 (ent/espL2, nleB, nleE, Z4321, Z4326, Z4332, Z4333) among 204 clinical, food and animal isolates belonging to 52 non-O157:H7 serotypes. Differences in the frequencies of genetic markers and a wide spectrum of PAI virulence profiles were found. In most LEE-negative strains, only module 1 (Z4321) of OI-122 was present. However, some unusual eae-negative strains were detected, which carried other PAI genes. The cluster analysis, excluding isolates that presented no genes, defined two major groups: eae-negative (determined as seropathotypes (SPTs) D, E or without determination, isolated from cattle or food) and eae-positive (mostly identified as SPTs B, C, or not determined).

13.
Rev. colomb. biotecnol ; 12(2): 55-66, dic. 2010. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-590774

RESUMO

Para la comprensión de las bases genéticas de los mecanismos de patogenicidad de Salmonella se han descrito diversas metodologías para manipular el ADN genómico y generar mutantes con características particulares. En este estudio se reporta la construcción de mutantes a partir de varios serotipos de S. enterica, por sustitución e inactivación de los genes invG/invE en SPI-1 y de los genes ssaJ/ssaK en SPI-2 mediante la técnica de recombinasa Red del fago λ descrita por Datsenko y Wanner (2000). Los genes delecionados en las SPI-1 y SPI-2 codifican para las proteínas que participan en la formación de los sistemas de secreción tipo III, responsables de la invasión y supervivencia intracelular de S. enterica en las células hospedadoras. Los resultados de este trabajo permitirán realizar estudios futuros in vivo para evaluar la posible atenuación de la virulencia de las cepas mutantes, así como aportar nuevos conocimientos sobre los mecanismos genéticos involucrados en la fisiopatogenia de las enfermedades producidas por los serovares estudiados. Además, esta técnica se recomienda para generar de manera eficiente mutantes de diferentes serotipos de S. enterica con la finalidad de estudiar los genes cromosómicos y sus productos.


To understand the genetic basis of Salmonella pathogenicity mechanisms, various methods have been described to manipulate and generate mutant genomic DNA with specific characteristics. In this study we report the construction of mutants from several serotypes of S. enterica, substitution and inactivation of genes invG/invE in SPI-1 gene and ssaJ/ssaK in SPI-2 by the technique of phage λ Red recombinase, as described by Datsenko and Wanner (2000). The gene deletion in SPI-1 and SPI-2 encodes proteins involved in the formation of type III secretion systems responsible for the invasion and intracellular survival of S. enterica in the host cells. The results of this work will allow in vivo studies to evaluate the possible attenuation of virulence of the mutant strains, as well as to provide new insights into the genetic mechanisms involved in the pathogenesis of diseases caused by these bacteria. Moreover, this technique is recommended to efficiently generate mutants of different serotypes of S. enterica in order to study the chromosomal genes and their products.


Assuntos
Salmonella enterica/fisiologia , Salmonella enterica/genética , Salmonella enterica/imunologia , Salmonella enterica/patogenicidade , Salmonella enterica/química , Salmonella enterica/ultraestrutura , Mutação/genética , Mutação/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA