Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30800644

RESUMO

In biology, models are experimental systems meant to recreate aspects of diseases or human tissue with the goal of generating inferences and approximations that can contribute to the resolution of specific biological problems. Although there are many models for studying intracellular parasites, their data have produced critical contradictions, especially in immunological assays. Peripheral blood mononuclear cells (PBMCs) represent an attractive tissue source in pharmacogenomics and in molecular and immunologic studies, as these cells are easily collected from patients and can serve as sentinel tissue for monitoring physiological perturbations due to disease. However, these cells are a very sensitive model due to variables such as temperature, type of stimulus and time of collection as part of posterior processes. PBMCs have been used to study Toxoplasma gondii and other apicomplexan parasites. For instance, this model is frequently used in new therapies or vaccines that use peptides or recombinant proteins derived from the parasite. The immune response to T. gondii is highly variable, so it may be necessary to refine this cellular model. This mini review highlights the major approaches in which PBMCs are used as a model of study for T. gondii and other apicomplexan parasites. The variables related to this model have significant implications for data interpretation and conclusions related to host-parasite interaction.


Assuntos
Apicomplexa/crescimento & desenvolvimento , Apicomplexa/imunologia , Interações Hospedeiro-Patógeno , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/parasitologia , Modelos Teóricos , Infecções por Protozoários/fisiopatologia , Animais , Pesquisa Biomédica/tendências , Humanos , Infecções por Protozoários/imunologia , Infecções por Protozoários/parasitologia
2.
Hum Vaccin Immunother ; 11(7): 1762-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075901

RESUMO

Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response.


Assuntos
Anticorpos Antivirais/análise , Células Dendríticas/imunologia , Vacina contra Sarampo/imunologia , Sarampo/imunologia , Imunidade Adaptativa/imunologia , Adulto , Fatores Etários , Anticorpos Neutralizantes/análise , Contagem de Células , Feminino , Humanos , Imunidade Humoral/imunologia , Imunidade Inata/imunologia , Lactente , Masculino , Vacina contra Sarampo/efeitos adversos , México , Linfócitos T/imunologia , Vacinação , Ensaio de Placa Viral
3.
Hum Vaccin Immunother ; 10(11): 3261-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25625929

RESUMO

Autologous dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) are a promising immunological tool for cancer therapy. These stimulate the antitumor response and immunological memory generation. Nevertheless, many patients remain refractory to DC approaches. Antigen (Ag) delivery to DCs is relevant to vaccine success, and antigen peptides, tumor-associated proteins, tumor cells, autologous tumor lysates, and tumor-derived mRNA have been tested as Ag sources. Recently, DCs loaded with allogeneic tumor cell lysates were used to induce a potent immunological response. This strategy provides a reproducible pool of almost all potential Ags suitable for patient use, independent of MHC haplotypes or autologous tumor tissue availability. However, optimizing autologous tumor cell lysate preparation is crucial to enhancing efficacy. This review considers the role of cancer cell-derived lysates as a relevant source of antigens and as an activating factor for ex vivo therapeutic DCs capable of responding to neoplastic cells. These promising therapies are associated with the prolonged survival of advanced cancer patients.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Extratos Celulares/uso terapêutico , Células Dendríticas/imunologia , Neoplasias/imunologia , Extratos Celulares/imunologia , Humanos , Memória Imunológica/imunologia , Neoplasias/prevenção & controle , Neoplasias/terapia , Linfócitos T Citotóxicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA