Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Eur J Clin Invest ; 54(11): e14288, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39058257

RESUMO

BACKGROUND: Low physical performance is associated with higher mortality rate in multiple pathological conditions. Here, we aimed to determine whether body composition and physical performance could be prognostic factors in non-small cell lung cancer (NSCLC) patients. Moreover, we performed an exploratory approach to determine whether plasma samples from NSCLC patients could directly affect metabolic and structural phenotypes in primary muscle cells. METHODS: This prospective cohort study included 55 metastatic NSCLC patients and seven age-matched control subjects. Assessments included physical performance, body composition, quality of life and overall survival rate. Plasma samples from a sub cohort of 18 patients were collected for exploratory studies in cell culture and metabolomic analysis. RESULTS: We observed a higher survival rate in NSCLC patients with high performance in the timed up-and-go (+320%; p = .007), sit-to-stand (+256%; p = .01) and six-minute walking (+323%; p = .002) tests when compared to NSCLC patients with low physical performance. There was no significant association for similar analysis with body composition measurements (p > .05). Primary human myotubes incubated with plasma from NSCLC patients with low physical performance had impaired oxygen consumption rate (-54.2%; p < .0001) and cell proliferation (-44.9%; p = .007). An unbiased metabolomic analysis revealed a list of specific metabolites differentially expressed in the plasma of NSCLC patients with low physical performance. CONCLUSION: These novel findings indicate that physical performance is a prognostic factor for overall survival in NSCLC patients and provide novel insights into circulating factors that could impair skeletal muscle metabolism.


Assuntos
Composição Corporal , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Desempenho Físico Funcional , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Estudos Prospectivos , Metaboloma/fisiologia , Estudos de Casos e Controles , Consumo de Oxigênio/fisiologia , Taxa de Sobrevida , Qualidade de Vida , Fibras Musculares Esqueléticas/metabolismo , Proliferação de Células , Teste de Caminhada
2.
Antioxidants (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107320

RESUMO

Redox signaling alterations contribute to chronic kidney disease (CKD)-associated cachexia. This review aims to summarize studies about redox pathophysiology in CKD-associated cachexia and muscle wasting and to discuss potential therapeutic approaches based on antioxidant and anti-inflammatory molecules to restore redox homeostasis. Enzymatic and non-enzymatic systems of antioxidant molecules have been studied in experimental models of kidney diseases and patients with CKD. Oxidative stress is increased by several factors present in CKD, including uremic toxins, inflammation, and metabolic and hormone alterations, leading to muscle wasting. Rehabilitative nutritional and physical exercises have shown beneficial effects for CKD-associated cachexia. Anti-inflammatory molecules have also been tested in experimental models of CKD. The importance of oxidative stress has been shown by experimental studies in which antioxidant therapies ameliorated CKD and its associated complications in the 5/6 nephrectomy model. Treatment of CKD-associated cachexia is a challenge and further studies are necessary to investigate potential therapies involving antioxidant therapy.

3.
Adv Rheumatol ; 63(1): 14, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949513

RESUMO

BACKGROUND: Rheumatoid arthritis is an autoimmune inflammatory disease that often leads patients to muscle impairment and physical disability. This study aimed to evaluate changes in the activity of proteasome system in skeletal muscles of mice with collagen-induced arthritis (CIA) and treated with etanercept or methotrexate. METHODS: Male DBA1/J mice were divided into four groups (n = 8 each): CIA-Vehicle (treated with saline), CIA-ETN (treated with etanercept, 5.5 mg/kg), CIA-MTX (treated with methotrexate, 35 mg/kg) and CO (healthy control group). Mice were treated two times a week for 6 weeks. Clinical score and hind paw edema were measured. Muscles were weighted after euthanasia and used to quantify proteasome activity, gene (MuRF-1, PMSα4, PSMß5, PMSß6, PSMß7, PSMß8, PSMß9, and PSMß10), and protein (PSMß1, PSMß5, PSMß1i, PSMß5i) expression of proteasome subunits. RESULTS: Both treatments slowed disease development, but only CIA-ETN maintained muscle weight compared to CIA-MTX and CIA-Vehicle groups. Etanercept treatment showed caspase-like activity of 26S proteasome similar to CO group, while CIA-Vehicle and CIA-MTX had higher activity compared to CO group (p: 0.0057). MuRF-1 mRNA expression was decreased after etanercept administration compared to CIA-Vehicle and CO groups (p: 0.002, p: 0.007, respectively). PSMß8 and PSMß9 mRNA levels were increased in CIA-Vehicle and CIA-MTX compared to CO group, while CIA-ETN presented no difference from CO. PMSß6 mRNA expression was higher in CIA-Vehicle and CIA-MTX groups than in CO group. Protein levels of the PSMß5 subunit were increased in CO group compared to CIA-Vehicle; after both etanercept and methotrexate treatments, PSMß5 expression was higher than in CIA-Vehicle group and did not differ from CO group expression (p: 0.0025, p: 0.001, respectively). The inflammation-induced subunit ß1 (LMP2) was enhanced after methotrexate treatment compared to CO group (p: 0.043). CONCLUSIONS: The results of CIA-Vehicle show that arthritis increases muscle proteasome activation by enhanced caspase-like activity of 26S proteasome and increased PSMß8 and PSMß9 mRNA levels. Etanercept treatment was able to maintain the muscle weight and to modulate proteasome so that its activity and gene expression were compared to CO after TNF inhibition. The protein expression of inflammation-induced proteasome subunit was increased in muscle of CIA-MTX group but not following etanercept treatment. Thus, anti-TNF treatment may be an interesting approach to attenuate the arthritis-related muscle wasting.


Assuntos
Antirreumáticos , Artrite Experimental , Masculino , Humanos , Camundongos , Animais , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Metotrexato/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Quimioterapia Combinada , Resultado do Tratamento , Músculo Esquelético , Inflamação/tratamento farmacológico
4.
Front Oncol ; 13: 1237709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234397

RESUMO

Background: Even though doxorubicin (DOX) chemotherapy promotes intense muscle wasting, this drug is still widely used in clinical practice due to its remarkable efficiency in managing cancer. On the other hand, intense muscle loss during the oncological treatment is considered a bad prognosis for the disease's evolution and the patient's quality of life. In this sense, strategies that can counteract the muscle wasting induced by DOX are essential. In this study, we evaluated the effectiveness of formoterol (FOR), a ß2-adrenoceptor agonist, in managing muscle wasting caused by DOX. Methods and results: To evaluate the effect of FOR on DOX-induced muscle wasting, mice were treated with DOX (2.5 mg/kg b.w., i.p. administration, twice a week), associated or not to FOR treatment (1 mg/kg b.w., s.c. administration, daily). Control mice received vehicle solution. A combination of FOR treatment with DOX protected against the loss of body weight (p<0.05), muscle mass (p<0.001), and grip force (p<0.001) promoted by chemotherapy. FOR also attenuated muscle wasting (p<0.01) in tumor-bearing mice on chemotherapy. The potential mechanism by which FOR prevented further DOX-induced muscle wasting occurred by regulating Akt/FoxO3a signaling and gene expression of atrogenes in skeletal muscle. Conclusions: Collectively, our results suggest that FOR can be used as a pharmacological strategy for managing muscle wasting induced by DOX. This study provides new insights into the potential therapeutic use of FOR to improve the overall wellbeing of cancer patients undergoing DOX chemotherapy.

5.
Adv Rheumatol ; 63: 14, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447130

RESUMO

Abstract Background Rheumatoid arthritis is an autoimmune inflammatory disease that often leads patients to muscle impairment and physical disability. This study aimed to evaluate changes in the activity of proteasome system in skeletal muscles of mice with collagen-induced arthritis (CIA) and treated with etanercept or methotrexate. Methods Male DBA1/J mice were divided into four groups (n = 8 each): CIA-Vehicle (treated with saline), CIA-ETN (treated with etanercept, 5.5 mg/kg), CIA-MTX (treated with methotrexate, 35 mg/kg) and CO (healthy control group). Mice were treated two times a week for 6 weeks. Clinical score and hind paw edema were measured. Muscles were weighted after euthanasia and used to quantify proteasome activity, gene (MuRF-1, PMSα4, PSMβ5, PMSβ6, PSMβ7, PSMβ8, PSMβ9, and PSMβ10), and protein (PSMβ1, PSMβ5, PSMβ1i, PSMβ5i) expression of proteasome subunits. Results Both treatments slowed disease development, but only CIA-ETN maintained muscle weight compared to CIA-MTX and CIA-Vehicle groups. Etanercept treatment showed caspase-like activity of 26S proteasome similar to CO group, while CIA-Vehicle and CIA-MTX had higher activity compared to CO group (p: 0.0057). MuRF-1 mRNA expression was decreased after etanercept administration compared to CIA-Vehicle and CO groups (p: 0.002, p: 0.007, respectively). PSMβ8 and PSMβ9 mRNA levels were increased in CIA-Vehicle and CIA-MTX compared to CO group, while CIA-ETN presented no difference from CO. PMSβ6 mRNA expression was higher in CIA-Vehicle and CIA-MTX groups than in CO group. Protein levels of the PSMβ5 subunit were increased in CO group compared to CIA-Vehicle; after both etanercept and methotrexate treatments, PSMβ5 expression was higher than in CIA-Vehicle group and did not differ from CO group expression (p: 0.0025, p: 0.001, respectively). The inflammation-induced subunit β1 (LMP2) was enhanced after methotrexate treatment compared to CO group (p: 0.043). Conclusions The results of CIA-Vehicle show that arthritis increases muscle proteasome activation by enhanced caspase-like activity of 26S proteasome and increased PSMβ8 and PSMβ9 mRNA levels. Etanercept treatment was able to maintain the muscle weight and to modulate proteasome so that its activity and gene expression were compared to CO after TNF inhibition. The protein expression of inflammation-induced proteasome subunit was increased in muscle of CIA-MTX group but not following etanercept treatment. Thus, anti-TNF treatment may be an interesting approach to attenuate the arthritis-related muscle wasting.

6.
Front Physiol ; 13: 1033932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518110

RESUMO

Objectives: To determine the metabolic effects of cancer-conditioned media on myotube metabolism and to understand whether the variability of these effects is associated with cancer cachexia progression. Materials and methods: We established single-cell clones from murine Lewis lung carcinoma (LLC) cells and generated conditioned media from each clonal line. Differentiated primary mouse myotubes were incubated with conditioned media derived from each individual clonal cell line. After initial analysis, we selected a specific LLC clonal cell line that failed to induce metabolic stress in myotubes for further investigation in vitro and in vivo. Results: Short-term incubation with conditioned media from 10/34 LLC clonal cells failed to affect oxygen consumption rate (OCR) in myotubes. Incubation with parental LLC-conditioned media decreased protein content and changed the expression of key regulators of muscle function in myotubes, but the incubation of conditioned media from a selected clone that failed to affect OCR in myotubes also did not affect protein content and expression of muscle regulators. Mice injected with parental LLC cells had a significantly reduced body mass and muscle wasting compared to the mice injected with cells derived from this selected LLC clone. Conclusion: Factors secreted by LLC cells induce metabolic stress in primary myotubes and induce cancer cachexia in mice. However, a selected clonal LLC cell line that failed to induce metabolic stress in myotubes also promoted weaker catabolism in mice. These novel findings establish that early disruption of muscle oxidative metabolism is associated with cancer cachexia progression.

7.
J Nephrol ; 35(9): 2215-2225, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36322291

RESUMO

Increased muscle protein catabolism leading to muscle wasting is a prominent feature of the syndrome of protein-energy wasting (PEW) in patients with chronic kidney disease (CKD). PEW and muscle wasting are induced by factors such as inflammation, oxidative stress and metabolic acidosis that activate the ubiquitin-proteasome system, the main regulatory mechanism of skeletal muscle degradation. Whether deficiency of nuclear factor erythroid 2-related factor 2 (NRF2), which regulates expression of antioxidant proteins protecting against oxidative damage triggered by inflammation, may exacerbate PEW has yet to be examined in aging patients with CKD. This review focuses on the hypothesis that NRF2 is involved in the maintenance of muscle mass and explores whether sustained activation of NRF2 by non-pharmacological interventions using nutraceutical activators to improve redox homeostasis could be a plausible strategy to prevent skeletal muscle disorders, including muscle wasting, sarcopenia and frailty associated with PEW in aging CKD patients.


Assuntos
Fator 2 Relacionado a NF-E2 , Insuficiência Renal Crônica , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Caquexia/complicações , Caquexia/metabolismo , Caquexia/patologia , Envelhecimento , Músculo Esquelético/metabolismo , Inflamação/complicações
8.
Healthcare (Basel) ; 10(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292451

RESUMO

Background: Muscle wasting, also known as myopenia, is frequent in rheumatoid arthritis (RA). To date, it is still unknown if the failure of pharmacologic therapies increases the risk of myopenia in RA. Objective: To identify if treatment failure with conventional synthetic DMARDs (csDMARDs) constitutes an independent risk factor of muscle wasting in women with RA. Methods: This was a cross-sectional study. We included 277 women with RA. Assessments in RA patients included: clinical, epidemiological, and therapeutic variables. The skeletal muscle index (SMI) was estimated by DXA, and myopenia was diagnosed if they had an SMI < 5.45 kg/m2. Multivariable logistic regression models identified risk factors of myopenia. Results: Muscle wasting was observed in 28.2% of patients with RA. The risk factors of myopenia in RA were menopausal (OR: 4.45, 95% CI: 1.86 to 10.64) and failure of combined therapy with csDMARDs (OR: 2.42, 95% CI: 1.15 to 5.07). The increased body mass index was protective (OR:0.81, 95% CI: 0.75 to 0.87). Conclusions: Around one of four patients with RA presented muscle wasting. Muscle wasting is related to treatment failure of combined csDMARDs; other factors influencing the presence of muscle wasting is being postmenopausal, whereas, the body mass index was a protective factor.

9.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139784

RESUMO

Cholestatic chronic liver disease is characterized by developing sarcopenia and elevated serum levels of bile acids. Sarcopenia is a skeletal muscle disorder with the hallmarks of muscle weakness, muscle mass loss, and muscle strength decline. Our previous report demonstrated that deoxycholic acid (DCA) and cholic acid (CA), through the membrane receptor TGR5, induce a sarcopenia-like phenotype in myotubes and muscle fibers. The present study aimed to evaluate the impact of DCA and CA on mitochondrial mass and function in muscle fibers and the role of the TGR5 receptor. To this end, muscle fibers obtained from wild-type and TGR5-/- mice were incubated with DCA and CA. Our results indicated that DCA and CA decreased mitochondrial mass, DNA, and potential in a TGR5-dependent fashion. Furthermore, with TGR5 participation, DCA and CA also reduced the oxygen consumption rate and complexes I and II from the mitochondrial electron transport chain. In addition, DCA and CA generated more mitochondrial reactive oxygen species than the control, which were abolished in TGR5-/- mice muscle fibers. Our results indicate that DCA and CA induce mitochondrial dysfunction in muscle fibers through a TGR5-dependent mechanism.

10.
Front Oncol ; 12: 880787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847939

RESUMO

Purpose: Although the role of signal transducers and activators of transcription (STAT3) in cachexia due to the association of circulating IL-6 and muscle wasting has been extensively demonstrated, the effect of resistance training on STAT3 in mediating muscle atrophy in tumor-bearing mice is unknown. The aim of this study is to investigate the effects of resistance exercise training on inflammatory cytokines and oxidative-mediated STAT3 activation and muscle loss prevention in tumor-bearing mice. Methods: Male Swiss mice were inoculated with Ehrlich tumor cells and exposed or not exposed to resistance exercise protocol of ladder climbing. Skeletal muscle STAT3 protein content was measured, compared between groups, and tested for possible association with plasma interleukins and local oxidative stress markers. Components of the ubiquitin-proteasome and autophagy pathways were assessed by real-time PCR or immunoblotting. Results: Resistance training prevented STAT3 excessive activation in skeletal muscle mediated by the overabundance of plasma IL-6 and muscle oxidative stress. These mechanisms contributed to preventing the increased key genes and proteins of ubiquitin-proteasome and autophagy pathways in tumor-bearing mice, such as Atrogin-1, LC3B-II, and Beclin-1. Beyond preventing muscle atrophy, RT also prevented strength loss and impaired locomotor capacity, hallmarks of sarcopenia. Conclusion: Our results suggest that STAT3 inhibition is central in resistance exercise protective effects against cancer-induced muscle atrophy and strength loss.

11.
Metabolites ; 12(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35629898

RESUMO

Metabolomic analysis provides a wealth of information that can be predictive of distinctive phenotypes of pathogenic processes and has been applied to better understand disease development. Rheumatoid arthritis (RA) is an autoimmune disease with the establishment of chronic synovial inflammation that affects joints and peripheral tissues such as skeletal muscle and bone. There is a lack of useful disease biomarkers to track disease activity, drug response and follow-up in RA. In this review, we describe potential metabolic biomarkers that might be helpful in the study of RA pathogenesis, drug response and risk of comorbidities. TMAO (choline and trimethylamine oxide) and TCA (tricarboxylic acid) cycle products have been suggested to modulate metabolic profiles during the early stages of RA and are present systemically, which is a relevant characteristic for biomarkers. Moreover, the analysis of lipids such as cholesterol, FFAs and PUFAs may provide important information before disease onset to predict disease activity and treatment response. Regarding therapeutics, TNF inhibitors may increase the levels of tryptophan, valine, lysine, creatinine and alanine, whereas JAK/STAT inhibitors may modulate exclusively fatty acids. These observations indicate that different disease modifying antirheumatic drugs have specific metabolic profiles and can reveal differences between responders and non-responders. In terms of comorbidities, physical impairment represented by higher fatigue scores and muscle wasting has been associated with an increase in urea cycle, FFAs, tocopherols and BCAAs. In conclusion, synovial fluid, blood and urine samples from RA patients seem to provide critical information about the metabolic profile related to drug response, disease activity and comorbidities.

12.
Cancers (Basel) ; 14(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053505

RESUMO

Cachexia is a multifactorial syndrome that presents with, among other characteristics, progressive loss of muscle mass and anti-cardiac remodeling effect that may lead to heart failure. This condition affects about 80% of patients with advanced cancer and contributes to worsening patients' tolerance to anticancer treatments and to their premature death. Its pathogenesis involves an imbalance in metabolic homeostasis, with increased catabolism and inflammatory cytokines levels, leading to proteolysis and lipolysis, with insufficient food intake. A multimodal approach is indicated for patients with cachexia, with the aim of reducing the speed of muscle wasting and improving their quality of life, which may include nutritional, physical, pharmacologic, and psychological support. This review aims to outline the mechanisms of muscle loss, as well as to evaluate the current clinical evidence of the use of physical exercise in patients with cachexia.

13.
Cells ; 10(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944037

RESUMO

Interleukin-6 (IL-6) is a pro-inflammatory cytokine associated with skeletal muscle wasting in cancer cachexia. The control of gene expression by microRNAs (miRNAs) in muscle wasting involves the regulation of thousands of target transcripts. However, the miRNA-target networks associated with IL6-induced muscle atrophy remain to be characterized. Here, we show that IL-6 promotes the atrophy of C2C12 myotubes and changes the expression of 20 miRNAs (5 up-regulated and 15 down-regulated). Gene Ontology analysis of predicted miRNAs targets revealed post-transcriptional regulation of genes involved in cell differentiation, apoptosis, migration, and catabolic processes. Next, we performed a meta-analysis of miRNA-published data that identified miR-497-5p, a down-regulated miRNAs induced by IL-6, also down-regulated in other muscle-wasting conditions. We used miR-497-5p mimics and inhibitors to explore the function of miR-497-5p in C2C12 myoblasts and myotubes. We found that miR-497-5p can regulate the expression of the cell cycle genes CcnD2 and CcnE1 without affecting the rate of myoblast cellular proliferation. Notably, miR-497-5p mimics induced myotube atrophy and reduced Insr expression. Treatment with miR-497-5p inhibitors did not change the diameter of the myotubes but increased the expression of its target genes Insr and Igf1r. These genes are known to regulate skeletal muscle regeneration and hypertrophy via insulin-like growth factor pathway and were up-regulated in cachectic muscle samples. Our miRNA-regulated network analysis revealed a potential role for miR-497-5p during IL6-induced muscle cell atrophy and suggests that miR-497-5p is likely involved in a compensatory mechanism of muscle atrophy in response to IL-6.


Assuntos
Interleucina-6/efeitos adversos , MicroRNAs/metabolismo , Células Musculares/metabolismo , Atrofia Muscular/genética , Animais , Caquexia/etiologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Camundongos , MicroRNAs/genética , Modelos Biológicos , Células Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/patologia , Neoplasias/complicações , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos
14.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830882

RESUMO

We investigated the effects of AET on myomiRs expression in the skeletal muscle and serum of colon cachectic (CT26) and breast non-cachectic (MMTV-PyMT) cancer mice models. Colon cancer decreased microRNA-486 expression, increasing PTEN in tibialis anterior muscle (TA), decreasing the PI3K/mTOR protein pathway, body and muscle wasting, fibers' cross-sectional area and muscle dysfunction, that were not preserved by AET. In contrast, breast cancer decreased those muscle functions, but were preserved by AET. In circulation, the downregulation of microRNA-486 and -206 in colon cancer, and the downregulation of microRNA-486 and upregulation of microRNA-206 expression in breast cancer might be good cancer serum biomarkers. Since the microRNA-206 is skeletal muscle specific, their expression was increased in the TA, serum and tumor in MMTV, suggesting a communication among these three compartments. The AET prevents these effects on microRNA-206, but not on microRNA-486 in MMTV. In conclusion, cancer induced a downregulation of microRNA-486 expression in TA and serum of CT26 and MMTV mice and these effects were not prevented by AET; however, to MMTV, the trained muscle function was preserved, probably sustained by the downregulation of microRNA-206 expression. Serum microRNA-206 is a potential biomarker for colon (decreased) and breast (increased) cancer to monitor the disease evolution and the effects promoted by the AET.

15.
Nanomedicine (Lond) ; 16(28): 2521-2538, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34743611

RESUMO

Skeletal muscle is integral to the functioning of the human body. Several pathological conditions, such as trauma (primary lesion) or genetic diseases such as Duchenne muscular dystrophy (DMD), can affect and impair its functions or exceed its regeneration capacity. Tissue engineering (TE) based on natural, synthetic and hybrid biomaterials provides a robust platform for developing scaffolds that promote skeletal muscle regeneration, strength recovery, vascularization and innervation. Recent 3D-cell printing technology and the use of nanocarriers for the release of drugs, peptides and antisense oligonucleotides support unique therapeutic alternatives. Here, the authors present recent advances in scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration and perspectives for future endeavors.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Humanos , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Regeneração , Engenharia Tecidual , Cicatrização
16.
Clin Nutr ; 40(8): 4871-4877, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358831

RESUMO

BACKGROUND & AIMS: Due to the lack of validated methods of muscle assessment, sarcopenia is not well described in critically ill children. The main objectives of this study were to assess muscle wasting using point-of-care ultrasound (POCUS) and anthropometry, as well as its association with nutrition delivery in PICU. METHODS: This was a single-center, prospective cohort study, including consecutive children admitted to the PICU. Quadriceps femoris muscle thickness (QFMT) and anthropometrics measurements were performed at admission and then weekly until the 14th day of the PICU stay. The three moments of assessment were defined as T0 (baseline), T1 (7th day) and T2 (14th day). For analysis purposes, participants assessed only in T0 and T1 were defined as Subgroup 1, while those assessed in T0, T1 and T2 were defined as Subgroup 2. Actual total daily intake was determined by patient intake records until discharge or during the first 14 full days of PICU admission. RESULTS: In all, 119 patients were included with a median age of 12.0 months (IQR 4.0-42.5). In Subgroup 1, QFMT significantly decreased between T0 and T1 (-12.93 ± 14.07 %; p < 0.001), and the same was observed in Subgroup 2 (-13.81 ± 13.05 %; p < 0.001). However, no differences in QFMT was observed between T1 and T2 (-2.06 ± 13.80 %; p = 0.936). Triceps skinfold thickness, mid-upper arm circumference, and upper arm muscle area presented a similar pattern of changes between periods in both groups. Decrease of QFMT at T1 was significantly correlated with the cumulative protein deficit in both subgroups, but not with the cumulative energy deficit. CONCLUSION: Substantial muscle wasting occurs early in critically ill children and may be related to insufficient protein delivery. Anthropometric measurements are valuable in PICU and POCUS has the potential to play a major role in sarcopenia assessment during critical illnesses. TRIAL REGISTRATION: Brazilian Clinical Trials registry, registration number: RBR-85YYGN.


Assuntos
Antropometria/métodos , Testes Imediatos , Sarcopenia/diagnóstico , Ultrassonografia/métodos , Pré-Escolar , Estado Terminal , Feminino , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica , Masculino , Atrofia Muscular/diagnóstico , Atrofia Muscular/etiologia , Estudos Prospectivos , Músculo Quadríceps/diagnóstico por imagem , Sarcopenia/etiologia , Dobras Cutâneas
17.
FASEB J ; 35(7): e21714, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118107

RESUMO

We tested the hypothesis that cancer cachexia progression would induce oxidative post-translational modifications (Ox-PTMs) associated with skeletal muscle wasting, with different responses in muscles with the prevalence of glycolytic and oxidative fibers. We used cysteine-specific isotopic coded affinity tags (OxICAT) and gel-free mass spectrometry analysis to investigate the cysteine Ox-PTMs profile in the proteome of both plantaris (glycolytic) and soleus (oxidative) muscles in tumor-bearing and control rats. Histological analysis revealed muscle atrophy in type II fibers in plantaris muscle, with no changes in plantaris type I fibers and no differences in both soleus type I and II fibers in tumor-bearing rats when compared to healthy controls. Tumor progression altered the Ox-PTMs profile in both plantaris and soleus. However, pathway analysis including the differentially oxidized proteins revealed tricarboxylic acid cycle and oxidative phosphorylation as main affected pathways in plantaris muscle from tumor-bearing rats, while the same analysis did not show main metabolic pathways affected in the soleus muscle. In addition, cancer progression affected several metabolic parameters such as ATP levels and markers of oxidative stress associated with muscle atrophy in plantaris muscle, but not in soleus. However, isolated soleus from tumor-bearing rats had a reduced force production capacity when compared to controls. These novel findings demonstrate that tumor-bearing rats have severe muscle atrophy exclusively in glycolytic fibers. Cancer progression is associated with cysteine Ox-PTMs in the skeletal muscle, but these modifications affect different pathways in a glycolytic muscle compared to an oxidative muscle, indicating that intrinsic muscle oxidative capacity determines the response to cancer cachectic effects.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/patologia , Neoplasias/patologia , Estresse Oxidativo/fisiologia , Animais , Caquexia/patologia , Progressão da Doença , Glicólise/fisiologia , Masculino , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Oxirredução , Fosforilação Oxidativa , Ratos , Ratos Wistar
18.
Clin Nutr ESPEN ; 43: 408-414, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34024548

RESUMO

BACKGROUND & AIMS: Survivors of critical illness experience significant skeletal muscle wasting that may predict clinical outcome. Ultrasound (US) is a noninvasive method that can measure muscle quadriceps muscle layer thickness (QMLT) at the bedside. The aim of this study was to determine the muscle loss assessed by ultrasonography (US) of the quadriceps femoris muscle in critically ill patients on mechanical ventilation and its relationship with hospital outcomes. METHODS: This study involved patients ≥18 years admitted to the intensive care unit who needed mechanical ventilation for at least 48 h. The quadriceps muscle layer thickness (QMLT) in the two-thirds of the thigh was quantified using bedside US. The QMLT of the left and right legs on the first (D1), third (D3), and seventh (D7) days were measured. RESULTS: US quadriceps thickness measurements were performed in 74 critically ill patients. The mean age was 62.3 ± 19.5 years, 54.1% of the patients were men, with a BMI of 25.5 ± 4.6 kg/m2, SAPS 3 of 55.2 ± 17.2, and NRS of 3.2 ± 1.0. The percentage muscle thickness declined at the right leg in 15% (95%CI, 10.5%-19.4%), and 12.7% (95%CI, 9.1%-16.3%) at the left leg from the first to the seventh day. Receiver operating characteristic showed cutoff value in muscle thickness of ≤1.64 cm on day 7 could predict survival (area under then curve = 0.7; 95% CI, 0.582-0.801). In Cox regression after adjusting, the probability of patients remaining on mechanical ventilation was higher with ≤1.64 cm loss of thigh muscle thickness on day 7; HR = 2.1 (95% CI 1.1-3.8, P = 0.017). The same occurred about ICU survival probability; HR = 3.7 (95% CI 1.2 to 11.5) and hospital survival probability; HR = 4.5 (95% CI 1.5 to 13.7). CONCLUSIONS: The measurement of QMLT using US showed that critically ill patients on mechanical ventilation presented with muscle wasting and greater loss of muscle thickness was associated with worse outcomes.


Assuntos
Estado Terminal , Respiração Artificial , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Quadríceps/diagnóstico por imagem , Ultrassonografia
19.
Front Physiol ; 12: 625417, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912068

RESUMO

Objectives: Identifying simple biomarkers to determine muscle atrophy in non-small-cell lung cancer (NSCLC) patients remains a critical research gap. Since creatinine is mainly a product from intramuscular creatine metabolism, we tested the hypothesis that low serum creatinine levels would be associated to skeletal muscle atrophy in NSCLC patients. Materials and Methods: This is a prospective cohort study including 106 treatment-naive patients with histologically confirmed stage IV NSCLC. All patients performed routine serum creatinine laboratory tests. We divided patients into two groups based on low (<0.7 mg/dL for male and <0.5 mg/dL for female) or normal creatinine levels. We compared body mass index (BMI), psoas muscle cross-sectional area, adipose tissue area and complete blood counts between groups. Results: Male and female NSCLC patients with low serum creatinine levels had low muscle cross-sectional area as compared to patients with normal serum creatinine levels. Male NSCLC patients with low serum creatinine also displayed reduced BMI, reduced adipose tissue area, and elevated systemic inflammation compared to NSCLC patients with normal serum creatinine levels. There were no significant differences between female groups for BMI, adipose tissue area and inflammatory markers. Conclusions: Serum creatinine is a potential prognostic biomarker of skeletal muscle atrophy in NSCLC patients. Since serum creatinine is a simple and accessible measurement, we suggest that it should be monitored in longitudinal follow-up of NSCLC patients as a biomarker of muscle atrophy.

20.
Expert Opin Pharmacother ; 22(7): 889-895, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33491505

RESUMO

INTRODUCTION: Cancer cachexia is a complex multifaceted syndrome involving functional impairment, changes in body composition, and nutritional disorders. The treatment of cancer cachexia can be based on these three domains of the syndrome. Phase II and III trials of anamorelin, a ghrelin mimetic agent, have been shown to increase body weight in patients with cancer cachexia, mainly by increasing muscle and fat mass. Anamorelin has been shown to improve anorexia scores. AREAS COVERED: This review aims to outline the effect of anamorelin on body composition and functional parameters as well as to discuss the clinical importance of these alterations in patients with cancer cachexia. EXPERT OPINION: To date, there is no treatment approved to enhance body composition and functional parameters in patients with cancer cachexia. Anamorelin, the most advanced therapy to treat cachexia, has not yielded convincing results in all aspects of the syndrome. In particular, no effect has been noted on physical function and long-term survival. Along with these essential improvements for future interventions with anamorelin, subsequent studies must address other etiologies of cancer, rather than non-small cell lung cancer, and add complementary therapies, such as exercise training and nutritional interventions, in an attempt to overcome cancer cachexia.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias , Anorexia/tratamento farmacológico , Anorexia/etiologia , Caquexia/tratamento farmacológico , Caquexia/etiologia , Humanos , Hidrazinas , Neoplasias/complicações , Oligopeptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA