Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(7): e0033524, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38916305

RESUMO

We report the draft genome sequence of three marine bacteria belonging to Pseudomonas and Stutzerimonas genera, with hydrocarbonoclastic metabolism for oil and monoaromatic hydrocarbon degradation. The genomic information of these organisms contributes to the knowledge of natural and polluted marine environments with ubiquitous presence of hydrocarbons as a selective pressure.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675459

RESUMO

Chagas disease is a Neglected Tropical Disease with limited and ineffective therapy. In a search for new anti-trypanosomal compounds, we investigated the potential of the metabolites from the bacteria living in the corals and sediments of the southeastern Brazilian coast. Three corals, Tubastraea coccinea, Mussismilia hispida, Madracis decactis, and sediments yielded 11 bacterial strains that were fully identified by MALDI-ToF/MS or gene sequencing, resulting in six genera-Vibrio, Shewanella, Mesoflavibacter, Halomonas, Bacillus, and Alteromonas. To conduct this study, EtOAc extracts were prepared and tested against Trypanosoma cruzi. The crude extracts showed IC50 values ranging from 15 to 51 µg/mL against the trypomastigotes. The bacterium Mesoflavibacter zeaxanthinifaciens was selected for fractionation, resulting in an active fraction (FII) with IC50 values of 17.7 µg/mL and 23.8 µg/mL against the trypomastigotes and amastigotes, respectively, with neither mammalian cytotoxicity nor hemolytic activity. Using an NMR and ESI-HRMS analysis, the FII revealed the presence of unsaturated iso-type fatty acids. Its lethal action was investigated, leading to a protein spectral profile of the parasite altered after treatment. The FII also induced a rapid permeabilization of the plasma membrane of the parasite, leading to cell death. These findings demonstrate that these unsaturated iso-type fatty acids are possible new hits against T. cruzi.

3.
Appl Microbiol Biotechnol ; 108(1): 112, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38217254

RESUMO

Marine bacteria living in association with marine sponges have proven to be a reliable source of biologically active secondary metabolites. However, no studies have yet reported natural products from Microbacterium testaceum spp. We herein report the isolation of a M. testaceum strain from the sponge Tedania brasiliensis. Molecular networking analysis of bioactive pre-fractionated extracts from culture media of M. testaceum enabled the discovery of testacosides A-D. Analysis of spectroscopic data and chemical derivatizations allowed the identification of testacosides A-D as glycoglycerolipids bearing a 1-[α-glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol moiety connected to 12-methyltetradecanoic acid for testacoside A (1), 14-methylpentadecanoic acid for testacoside B (2), and 14-methylhexadecanoic acid for testacosides C (3) and D (4). The absolute configuration of the monosaccharide residues was determined by 1H-NMR analysis of the respective diastereomeric thiazolidine derivatives. This is the first report of natural products isolated from cultures of M. testaceum. KEY POINTS: • The first report of metabolites produced by Microbacterium testaceum. • 1-[α-Glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol lipids isolated and identified. • Microbacterium testaceum strain isolated from the sponge Tedania brasiliensis.


Assuntos
Actinomycetales , Produtos Biológicos , Glicolipídeos , Poríferos , Animais , Glicerol/metabolismo , Poríferos/química , Actinomycetales/metabolismo , Espectroscopia de Ressonância Magnética , Produtos Biológicos/metabolismo , Microbacterium
4.
Int J Mol Sci, v. 25, n. 17, 9250, ago. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5467

RESUMO

This study aimed to evaluate the genomic profile of the Antarctic marine Curtobacterium sp. CBMAI 2942, as well as to optimize the conditions for chitinase production and antifungal potential for biological control. Assembly and annotation of the genome confirmed the genomic potential for chitinase synthesis, revealing two ChBDs of chitin binding (Chi C). The optimization enzyme production using an experimental design resulted in a 3.7-fold increase in chitinase production. The chitinase enzyme was identified by SDS-PAGE and confirmed through mass spectrometry analysis. The enzymatic extract obtained using acetone showed antifungal activity against the phytopathogenic fungus Aspergillus sp. series Nigri CBMAI 1846. The genetic capability of Curtobacterium sp. CBMAI 2942 for chitin degradation was confirmed through genomic analysis. The basal culture medium was adjusted, and the chitinase produced by this isolate from Antarctica showed significant inhibition against Aspergillus sp. Nigri series CBMAI 1846, which is a tomato phytopathogenic fungus. This suggests that this marine bacterium could potentially be used as a biological control of agricultural pests.

5.
Pharmaceuticals, v. 17, n. 4, 499, abr. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5320

RESUMO

Chagas disease is a Neglected Tropical Disease with limited and ineffective therapy. In a search for new anti-trypanosomal compounds, we investigated the potential of the metabolites from the bacteria living in the corals and sediments of the southeastern Brazilian coast. Three corals, Tubastraea coccinea, Mussismilia hispida, Madracis decactis, and sediments yielded 11 bacterial strains that were fully identified by MALDI-ToF/MS or gene sequencing, resulting in six genera—Vibrio, Shewanella, Mesoflavibacter, Halomonas, Bacillus, and Alteromonas. To conduct this study, EtOAc extracts were prepared and tested against Trypanosoma cruzi. The crude extracts showed IC50 values ranging from 15 to 51 μg/mL against the trypomastigotes. The bacterium Mesoflavibacter zeaxanthinifaciens was selected for fractionation, resulting in an active fraction (FII) with IC50 values of 17.7 μg/mL and 23.8 μg/mL against the trypomastigotes and amastigotes, respectively, with neither mammalian cytotoxicity nor hemolytic activity. Using an NMR and ESI-HRMS analysis, the FII revealed the presence of unsaturated iso-type fatty acids. Its lethal action was investigated, leading to a protein spectral profile of the parasite altered after treatment. The FII also induced a rapid permeabilization of the plasma membrane of the parasite, leading to cell death. These findings demonstrate that these unsaturated iso-type fatty acids are possible new hits against T. cruzi.

6.
Microorganisms ; 11(11)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38004719

RESUMO

In this study, 338 microorganisms, comprising 271 bacteria and 67 fungi, were isolated from sediment samples collected from underexplored Pacific and Caribbean regions of Colombia. Screening trials were conducted on selected strains (n = 276) to assess their tolerance to cadmium (Cd2+), lead (Pb2+), and zinc (Zn2+), leading to the identification of six bacteria capable of withstanding 750 mg·L-1 of each heavy metal ion. Three promising microorganisms, identified as Enterobacter sp. INV PRT213, Pseudomonas sp. INV PRT215, and Stenotrophomonas sp. INV PRT216 were selected for lead removal experiments using LB broth medium supplemented with 400 mg·L-1 Pb2+. Among these, Pseudomonas sp. INV PRT215 exhibited significant potential, removing 49% of initial Pb2+ after 240 min of exposure (16.7 g wet biomass·L-1, pH 5, 30 °C). Infrared spectra of Pb-exposed biomass showed changes in functional groups, including carbonyl groups of amides, carboxylate, phosphate, hydroxyl, and amine groups, compared to the not-exposed control. These changes suggested interactions between the metal and functional groups in the biomass. The findings of this study highlight the potential of microorganisms derived from coastal marine environments as promising candidates for future applications in bioremediation of polluted environments contaminated with heavy metals.

7.
Biomol NMR Assign ; 17(2): 229-233, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37542635

RESUMO

The InterPro family IPR007621 TPM_phosphatase is a widely conserved family of protein domains found in prokaryotes, plants and invertebrates. Despite similar predicted protein folding, members of this family are involved in different cellular processes. In recent years, the structural and biochemical characterization of evolutionarily divergent TPM domains has shown their ability to hydrolyze phosphate groups of different substrates. However, there are still inaccurate functional annotations and uncertain relationships between the structure and function of this domain family. We here report the 1H, 13C, and 15N backbone and sidechain resonances of the TPM domain of a predicted TPM domain-containing protein of the thermophilic bacterium Rhodothermus marinus. These data will lay the groundwork for future NMR-based investigations, contributing to a thorough comprehension of the intricate aspects governing the interplay between structure and function of TPM domains. Additionally, they will unlock opportunities to explore dynamic structural changes, providing valuable insights into the molecular mechanisms underlying the evolutionary adaptations to extreme environmental conditions within this protein family.


Assuntos
Rhodothermus , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética , Domínios Proteicos
8.
Curr Pharm Biotechnol ; 24(4): 471-485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35578838

RESUMO

The sponge-microorganism partnership is one of the most successful symbiotic associations exploited from a biotechnological perspective. During the last thirty years, sponge-associated bacteria have been increasingly harnessed for bioactive molecules, notably antimicrobials and cytotoxic compounds. Unfortunately, there are gaps in sponge microbial biotechnology, with a multitude of applications being understudied or ignored. In this context, the current perspective aims to shed light on these underrated facets of sponge microbial biotechnology with a balance of existent reports and proposals for further research in the field. Our overview has showcased that the members of the sponge microbiome produce biomolecules whose usage can be valuable for several economically- relevant and demanding sectors. Outside the exhaustive search for antimicrobial secondary metabolites, sponge-associated microorganisms are gifted producers of antibiofilm, antivirulence and chronic diseases-attenuating substances highly envisaged by the pharmaceutical industry. Despite still at an infant stage of research, anti-ageing enzymes and pigments of special interest for the cosmetic and cosmeceutical sectors have also been reported from the sponge microbial symbionts. In a world urging for sustainability, sponge-associated microorganisms have been proven as fruitful resources for bioremediation, including recovery of heavy-metal contaminated areas, bioleaching processes, and as bioindicators of environmental pollution. In conclusion, we propose alternatives to better assess these neglected biotechnological applications of the sponge microbiome in the hope of sparking the interest of the scientific community toward their deserved exploitation.


Assuntos
Anti-Infecciosos , Microbiota , Poríferos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biotecnologia
9.
Appl Microbiol Biotechnol ; 105(19): 7171-7185, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34515846

RESUMO

Marine ecosystems are some of the most adverse environments on Earth and contain a considerable portion of the global bacterial population, and some of these bacterial species play pivotal roles in several biogeochemical cycles. Marine bacteria have developed different molecular mechanisms to address fluctuating environmental conditions, such as changes in nutrient availability, salinity, temperature, pH, and pressure, making them attractive for use in diverse biotechnology applications. Although more than 99% of marine bacteria cannot be cultivated with traditional microbiological techniques, several species have been successfully isolated and grown in the laboratory, facilitating investigations of their biotechnological potential. Some of these applications may contribute to addressing some current global problems, such as environmental contamination by hydrocarbons and synthetic plastics. In this review, we first summarize and analyze recently published information about marine bacterial diversity. Then, we discuss new literature regarding the isolation and characterization of marine bacterial strains able to degrade hydrocarbons and petroleum-based plastics, and species able to produce biosurfactants. We also describe some current limitations for the implementation of these biotechnological tools, but also we suggest some strategies that may contribute to overcoming them. KEY POINTS: • Marine bacteria have a great metabolic capacity to degrade hydrocarbons in harsh conditions. • Marine environments are an important source of new bacterial plastic-degrading enzymes. • Secondary metabolites from marine bacteria have diverse potential applications in biotechnology.


Assuntos
Ecossistema , Plásticos , Bactérias/genética , Biodegradação Ambiental , Biotecnologia , Hidrocarbonetos
10.
Front Microbiol ; 12: 713702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413843

RESUMO

Paenarthrobacter sp. GOM3, which is a strain that represents a new species-specific context within the genus Paenarthrobacter, is clearly a branched member independent of any group described thus far. This strain was recovered from marine sediments in the Gulf of Mexico, and despite being isolated from a consortium capable of growing with phenanthrene as a sole carbon source, this strain could not grow successfully in the presence of this substrate alone. We hypothesized that the GOM3 strain could participate in the assimilation of intermediate metabolites for the degradation of aromatic compounds. To date, there are no experimental reports of Paenarthrobacter species that degrade polycyclic aromatic hydrocarbons (PAHs) or their intermediate metabolites. In this work, we report genomic and experimental evidence of metabolic benzoate, gentisate, and protocatechuate degradation by Paenarthrobacter sp. GOM3. Gentisate was the preferred substrate with the highest volumetric consumption rate, and genomic analysis revealed that this strain possesses multiple gene copies for the specific transport of gentisate. Furthermore, upon analyzing the GOM3 genome, we found five different dioxygenases involved in the activation of aromatic compounds, suggesting its potential for complete remediation of PAH-contaminated sites in combination with strains capable of assimilating the upper PAH degradation pathway. Additionally, this strain was characterized experimentally for its pathogenic potential and in silico for its antimicrobial resistance. An overview of the potential ecological role of this strain in the context of other members of this taxonomic clade is also reported.

11.
Rev. biol. trop ; Rev. biol. trop;69(2)jun. 2021.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1387651

RESUMO

Abstract Introduction: The coral-associated bacteria with antimicrobial activity may be important to promote the health of their host through various interactions, and may be explored as a source of new bioactive compounds. Objective: To analyze the antimicrobial activity of bacteria associated with the zoanthid Palythoa caribaeorum from the coral reefs of Carapibus, Paraiba state, Brazil. Methods: The phylogenetic analysis of the bacteria was conducted based on partial sequences of the 16S rRNA gene using molecular and bioinformatics tools. The antimicrobial activity of the 49 isolates was tested against four bacterial strains and one yeast strain: Bacillus cereus (CCT0198), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa and Candida albicans (ATCC 10231). The antibiosis and antibiogram assays were conducted and the Minimal Inhibitory Concentration (MIC) was determined by the microdilution method. Results: The bacterial isolates belonged to Firmicutes phylum (84 % of the isolates) and the Proteobacteria phylum (16 % of the isolates). Among the 49 isolates five genera were found, with the Bacillus genus being the most abundant (82 % of the isolates), followed by Vibrio (10 %), Pseudomonas (4 %), Staphylococcus (2 %) and Alteromonas (2 %). Antibiosis test revealed that 16 isolates (33 %) showed antimicrobial activity against one or more of five tested reference strains. The highest number of antagonistic bacteria were found in the Bacillus genus (12 isolates), followed by Vibrio (three isolates) and Pseudomonas (one isolate) genera. The B. subtilis NC8 was the only isolate that inhibited all tested strains in the antibiosis assay. However, antibiogram test with post-culture cell-free supernatant of NC8 isolate showed the inhibition of only B. cereus, S. aureus and C. albicans, and the lyophilized and dialyzed material of this isolate inhibited only B. cereus. The lyophilized material showed bacteriostatic activity against B. cereus, with a MIC value of 125 μg/μl, and in the cytotoxicity assay, the hemolysis value was of 4.8 %, indicating its low cytotoxicity. Conclusions: The results show the antimicrobial potential of some bacterial isolates associated with the P. caribaeourum tissue, especially those belonged to Bacillus genus.


Resumen Introducción: La actividad antimicrobiana realizada por las bacterias asociadas con los corales, además de promover la salud de su huésped, representa una fuente para obtener nuevos compuestos bioactivos. Objetivo: Analizar la actividad antimicrobiana de las bacterias asociadas con el zoantario Palythoa caribaeorum de los arrecifes de Carapibus, Paraíba, Brasil. Metodología: El análisis filogenético de la bacterias se realizó con base en secuencias parciales del gen RNAr 16S utilizando herramientas moleculares y de bioinformática. La actividad antimicrobiana de las cepas se probó contra cuatro cepas bacterianas y una cepa de levadura: Bacillus cereus (CCT0198), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa y Candida albicans (ATCC 10231), utilizando ensayos antibiosis y antibiograma, y la concentración inhibitoria mínima (CIM) que se determinó por el método de microdilución. Resultados: Las cepas bacterianas pertenecían a Firmicutes (84 %) y Gammaproteobacteria (16 %). Entre 49 cepas se encontraron cinco géneros de bacterias: Bacillus, Vibrio, Pseudomonas, Staphylococcus y Alteromonas. Un total de 19 cepas exhibieron actividad antimicrobiana, siendo el género Bacillus el responsable del mayor número de bacterias antagonistas, con 12 cepas positivas en el ensayo de antibiosis y cuatro en la prueba de antibiograma. El mayor número de bacterias antagonistas se encontró en Bacillus (12 aislamientos), seguido por Vibrio (tres aislamientos) y Pseudomonas (un aisladmiento). El NC8, clasificado como Bacillus subtilis, inhibió todas las cepas estándar en el ensayo de antibiosis y las cepas de B. cereus, S. aureus y C. albicans en la prueba de antibiograma. El material liofilizado del B. subtilis NC8 mostró acción bacteriostática contra B. cereus, con un valor de CIM de 125 μg/μl. En la prueba de citotoxicidad, el grado de hemólisis fue del 4.8 % para el material liofilizado a las concentraciones probadas, lo que indica su baja citotoxicidad. Conclusión: Los resultados muestran el potencial antimicrobiano de algunos aislamientos bacterianos asociados al P. caribaeourum, especialmente los pertenecientes al género Bacillus.


Assuntos
Bactérias , Antozoários/microbiologia , Bacillus , Biota
12.
Biotechnol Rep (Amst) ; 30: e00625, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34041001

RESUMO

We investigated the structural and functional properties of SdGA, a glucoamylase (GA) from Saccharophagus degradans, a marine bacterium which degrades different complex polysaccharides at high rate. SdGA is composed mainly by a N-terminal GH15_N domain linked to a C-terminal catalytic domain (CD) found in the GH15 family of glycosylhydrolases with an overall structure similar to other bacterial GAs. The protein was expressed in Escherichia coli cells, purified and its biochemical properties were investigated. Although SdGA has a maximum activity at 39 °C and pH 6.0, it also shows high activity in a wide range, from low to mild temperatures, like cold-adapted enzymes. Furthermore, SdGA has a higher content of flexible residues and a larger CD due to various amino acid insertions compared to other thermostable GAs. We propose that this novel SdGA, is a cold-adapted enzyme that might be suitable for use in different industrial processes that require enzymes which act at low or medium temperatures.

13.
Microorganisms ; 9(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802890

RESUMO

Bacterial diversity was explored among field samples and cultured isolates from coral reefs within the Veracruz Reef System. Bacterioplankton and bacteriobenthos were characterized by pyrosequencing 16S rRNA genes. Identified sequences belonged to the kingdom Bacteria and classified into 33 phyla. Proteobacteria (likely SAR11 clade) dominated in collective field samples, whereas Firmicutes were the most abundant taxa among cultured isolates. Bioinformatic sorting of sequences to family level revealed 223 bacterial families. Pseudomonadaceae, Exiguobacteraceae and Bacillaceae were dominant among cultured isolates. Vibrionaceae, Alteromonadaceae, and Flavobacteriaceae dominated in reef-associated sediments, whereas Rickettsiaceae and Synechoccaceae were more highly represented in the water column. Bacterial communities from sediments were more diverse than from the water column. This study reveals cryptic bacterial diversity among microenvironmental components of marine microbial reef communities subject to differential influence of anthropogenic stressors. Such investigations are critical for constructing scenarios of environmentally induced shifts in bacterial biodiversity and species composition.

14.
Biotechnol Appl Biochem ; 68(6): 1202-1215, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32969539

RESUMO

Microbial communities capable of hydrocarbon degradation linked to biosurfactant (BS) and bioemulsifier (BE) production are basically unexplored in the Gulf of México (GOM). In this work, the BS and BE production of culturable marine bacterial hydrocarbonoclasts consortia isolated from two sites (the Perdido Fold Belt and Coatzacoalcos area) was investigated. The prospection at different locations and depths led to the screening and isolation of a wide variety of bacterial consortia with BS and BE activities, after culture enrichment with crude oil and glycerol as the carbon sources. At least 55 isolated consortia presented reduction in surface tension (ST) and emulsifying activity (EI24 ). After colony purification, bacteria were submitted to polyphasic analysis assays that resulted in the identification of different strains of cultivable Gammaproteobacteria Gram (-) Citrobacter, Enterobacter, Erwinia, Pseudomonas, Vibrio, Shewanella, Thalassospira, Idiomarina, Pseudoalteromonas, Photobacterium, and Gram (+) Staphylococcus, Bacillus, and Microbacterium. Overall, the best results for ST reduction and EI24 were obtained with consortia. Individually, Pseudomonas, Bacillus, and Enterobacter strains showed the best results for the reduction of ST after 6 days, while Thalassospira and Idiomarina strains showed the best results for EI24 (above 68% after 9 days). Consortia isolates from the GOM had the ability to degrade crude oil by up to 40-80% after 24 and 36 months, respectively. In all cases, biodegradation of crude oil was related to the reduction in ST and bioemulsifying activity and was independent from the depth in the water column.


Assuntos
Sedimentos Geológicos/microbiologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Tensoativos/metabolismo , Água/química , Emulsões/química , Emulsões/metabolismo , Golfo do México , Tensoativos/química
15.
Microorganisms ; 8(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322780

RESUMO

Marine sponges are excellent examples of invertebrate-microbe symbioses. In this holobiont, the partnership has elegantly evolved by either transmitting key microbial associates through the host germline and/or capturing microorganisms from the surrounding seawater. We report here on the prokaryotic microbiota during different developmental stages of Plakina cyanorosea and their surrounding environmental samples by a 16S rRNA metabarcoding approach. In comparison with their source adults, larvae housed slightly richer and more diverse microbial communities, which are structurally more related to the environmental microbiota. In addition to the thaumarchaeal Nitrosopumilus, parental sponges were broadly dominated by Alpha- and Gamma-proteobacteria, while the offspring were particularly enriched in the Vibrionales, Alteromonodales, Enterobacterales orders and the Clostridia and Bacteroidia classes. An enterobacterial operational taxonomic unit (OTU) was the dominant member of the strict core microbiota. The most abundant and unique OTUs were not significantly enriched amongst the microbiomes from host specimens included in the sponge microbiome project. In a wider context, Oscarella and Plakina are the sponge genera with higher divergence in their associated microbiota compared to their Homoscleromorpha counterparts. Our results indicate that P. cyanorosea is a low microbial abundance sponge (LMA), which appears to heavily depend on the horizontal transmission of its microbial partners that likely help the sponge host in the adaptation to its habitat.

16.
Rev. biol. trop ; Rev. biol. trop;68(supl 2)set. 2020.
Artigo em Espanhol | LILACS, SaludCR | ID: biblio-1507605

RESUMO

Introducción: La bioluminiscencia es la capacidad de ciertos organismos para transformar la energía química en energía lumínica mediante varios procesos bioquímicos. Objetivo: El aislamiento e identificación por primera vez de bacterias luminiscentes en agua marina superficial y la identificación de dinoflagelados luminiscentes marinos del Parque Nacional Isla del Coco, Costa Rica. Metodología: Se colectaron muestras de agua marina obtenida por buceo a 20 m y a nivel superficial de 13 sitios en la Isla del Coco, Costa Rica. Por otra parte, se analizaron muestras de fitoplancton colectadas desde la superficie hasta los 30 m de profundudad en los alrededores de 8 sitios de la Isla del Coco, y se determinaron varias especies luminiscentes pertenecientes a los géneros Ornithocercus y Ceratocorys. Resultados: Se logró obtener 7 aislados bacterianos luminiscentes, se identificaron y caracterizaron bioquímicamente mediante una plataforma automatizada (Vitek) con altos niveles de confianza, se ubicaron taxonómicamente dentro del género Vibrio,2 especies: V. alginolyticus y V. parahaemolyticus, además, algunos aislados presentaron resistencia al antibiótico ampicilina y 100% capacidad hemolítica. Esta investigación muestra evidencia de la presencia de especies microscópicas marinas en Isla del Coco, Costa Rica, capaces de presentar el fenómeno de la luminiscencia, por lo que profundizar en su estudio sería relevante en cuanto a la importancia de estos microorganismos en la producción de metabolitos secundarios y como indicadores de floraciones algales nocivas, por lo que se hace necesario realizar más investigación científica para determinar su potencial biotecnológico. Conclusiones: De la misma forma, los resultados obtenidos en esta investigación sugieren expandir las localidades de colecta y aislamientos de microorganismos luminiscentes, acompañado de una caracterización bioquímica y molecular, con el fin de explorar la diversidad microbiana asociada a eventos de luminiscencia y determinar los ambientes en el que estas especies se desarrollan.


Introduction: Bioluminescence is the ability of certain organisms to transform chemical energy into light energy through various biochemical processes. Objective: Isolation and identification for the first time of luminescent bacteria of superficial marine water, and the identification of marine luminescent dinoflagellates of Isla del Coco National Park, Costa Rica. Methods: Samples of seawater obtained by diving at 20 m and at a surface level of 13 sites were collected. On the other hand, phytoplankton samples collected from the surface up to 30 m deep were analyzed in the surroundings of 8 sites of Cocos Island, and several luminescent species belonging to the genera Ornithocercus and Ceratocorys were determined. Results: Seven luminescent bacterial isolates were obtained, they were identified and characterized biochemically by means of an automated platform (Vitek) with high levels of confidence, they were taxonomically located within the genus Vibrio, 2 species: V. alginolyticus and V. parahaemolyticus, in addition, some isolates presented resistance to the antibiotic ampicillin and 100% hemolytic capacity. This research shows evidence of the presence of marine microscopic species in Cocos Island, Costa Rica, capable of presenting the phenomenon of luminescence, so that further study would be relevant in terms of the importance of these microorganisms in the production of metabolites secondary and as indicators of harmful algal blooms, so it is necessary to conduct more scientific research to determine their biotechnological potential. Conclusions: In the same way, the results obtained in this investigation suggest expanding the collection and isolation of luminescent microorganisms, accompanied by a biochemical and molecular characterization, in order to explore the microbial diversity associated with luminescence events and determine the environments in which that these species develop.


Assuntos
Bactérias/classificação , Dinoflagellida/classificação , Fitoplâncton/microbiologia , Costa Rica , Luminescência
17.
Rev. colomb. quím. (Bogotá) ; 49(1): 20-25, Jan.-Apr. 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1098955

RESUMO

Abstract Some bacteria release volatile organic compounds (VOCs) that can influence the growth of other microorganisms including some pathogens. Identifying bacteria with antifungal activity makes it possible to use such bacteria in the development of biocontrol agents. Thus, the present study focuses on screening VOCs released by eight isolates from Paenibacillus genus, collected at Old Providence and Santa Catalina coral reef (Colombian Caribbean Sea), with antifungal activity against phytopathogenic fungi Colletotrichum gloeosporioides 26B. The VOCs from Paenibacillus sp (PNM-50) showed inhibition rates higher than 50% in the mycelial fungi growth accompanied by macroscopic morphological changes and a reduction in conidiation. In order to identify the VOCs responsible for this antifungal bioactivity, Headspace-Solid Phase Microextraction (HS-SPME) from the bacterial culture was conducted, followed by Gas Chromatography Mass Spectrometry (GC-MS). The chromatographic results revealed a high abundance of VOCs released just by culture media. Once, the difference between VOCs emitted by culture media and bacteria was established, it was possible to make a putative identification of 2-furanmethanol, phenylacetonitrile, and 2,4-dimethylpentanol as possible VOCs responsible for the antifungal activity.


Resumen Algunas bacterias liberan compuestos orgánicos volátiles (COVs) que pueden influir en el crecimiento de otros microorganismos incluyendo algunos patógenos. La identificación de bacterias con actividad antifúngica hace posible el uso de tales bacterias en el desarrollo de agentes de biocontrol. Así pues, en este estudio, se realizó un examen dirigido exclusivamente a los COVs emitidos por ocho aislamientos bacterianos del género Paenibacillus, recolectados en el arrecife de coral de Providencia y Santa Catalina (Mar Caribe colombiano), con actividad antifúngica contra el hongo fitopatógeno Colletotrichum gloeosporioides 26B. Los COVs del aislamiento Paenibacillus sp (PNM-50) mostraron tasas de inhibición superiores al 50% en el crecimiento micelial del hongo, acompañado de cambios morfológicos macroscópicos y una reducción en la conidiación. Para identificar los COVs responsables de esta bioactividad antifúngica, se realizó microextracción en fase sólida del espacio de cabeza (HS-SPME) del cultivo de las bacterias y posterior análisis por cromatografía de gases acoplada a espectrometría de masas (GC-MS). Los resultados cromatográficos revelaron gran abundancia de COVs emitidos por los medios de cultivo. Una vez que se estableció la diferencia entre los COVs emitidos por el medio de cultivo y las bacterias, fue posible identificar tentativamente 2-furanmetanol, fenilacetonitrilo y 2,4-dimetilpentanol como COVs posiblemente responsables de la actividad antifúngica.


Resumo Algumas bactérias liberam compostos orgânicos voláteis (COV) que podem influenciar o crescimento de outros microorganismos, incluindo alguns patógenos. A identificação de bactérias com atividade antifúngica, possibilita seu uso no desenvolvimento de agentes de biocontrole. Neste estudo, foi realizada uma triagem focada nos COV liberados por oito isolados bacterianos do gênero Paenibacillus, coletados nos recifes de coral Old Providence e Santa Catalina (mar do Caribe colombiano), com atividade antifúngica contra fungos fitopatogênicos Colletotrichum gloeosporioides 26B. Os COV de Paenibacillus sp (PNM-50) apresentaram taxas de inibição superiores à 50% sobre o crescimento de fungos miceliais, acompanhadas de alterações morfológicas macroscópicas e redução da conidiação. Para identificar os COV responsáveis por essa bioatividade antifúngica, foi conduzida uma Microextração de Fase Sólida Headspace (HS-SPME) da cultura bacteriana e, em seguida, foi analisada por Cromatografia Gasosa associada à Espectrometria de Massa (GCMS). Os resultados cromatográficos revelaram uma alta abundância de COVs liberados apenas pelos meios de cultura. Uma vez estabelecida a diferença entre os COV emitidos pelos meios de cultura e bactérias, foi possível fazer uma identificação parcial de 2-furanmetanol, fenilacetonitrila e 2,4-dimetilpentanol como possíveis COV responsáveis pela atividade antifúngica.

18.
Electron. j. biotechnol ; Electron. j. biotechnol;44: 1-5, Mar. 2020. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1087706

RESUMO

Background: Freeze-drying is known as one of the best methods to preserve bacterial strains. Protectant is the key factor affecting the survival rate of freeze-dried strains. In addition, salinity, bacterial suspension concentration, drying time, and other factors can also affect the survival rate of strains to varying degrees. At present, there are relatively few studies on freeze-drying preservation of marine bacteria. In the present study, we performed the freeze-drying protectant screening and optimized the preservation conditions for Pseudoalteromonas nigrifaciens, which is widely distributed in marine environment. The protective effects of the screened protectants were verified by 18 other marine bacterial strains. Results: The results indicated that the combination of 5.0% (w/v) lactose, 5.0% (w/v) mannitol, 5.0% (w/v) trehalose, 10.0% (w/v) skim milk powder, 0.5% (w/v) ascorbic acid and 0.5% (w/v) gelatin was the best choice for the preservation of P. nigrifaciens. The suggested salinity and concentration of initial cell suspension were 10 g/L NaCl and 1.0 × 109 CFU/mL, respectively. Furthermore, stationary-phase cells were the best choice for the freeze-drying process. The highest survival rate of P. nigrifaciens reached 52.8% when using 5­10% (w/v) skim milk as rehydration medium. Moreover, the other 18 marine strains belonging to Pseudoalteromonas, Vibrio, Photobacterium, Planomicrobium, Edwardsiella, Enterococcus, Bacillus, and Saccharomyces were freezedried under the abovementioned conditions. Their survival rates were 2.3­95.1%. Conclusion: Collectively, our results supported that the protectant mixture and parameters were beneficial for lyophilization of marine bacteria


Assuntos
Preservação Biológica/métodos , Pseudoalteromonas/fisiologia , Liofilização/métodos , Trealose/química , Sobrevivência Celular , Fenômenos Fisiológicos Bacterianos , Dissacarídeos/química , Viabilidade Microbiana , Salinidade , Lactose/química , Manitol/química
19.
Crit Rev Biotechnol ; 40(3): 306-319, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31992085

RESUMO

The marine environment encompasses a huge biological diversity and can be considered as an underexplored location for prospecting bioactive molecules. In this review, the current state of art about antimicrobial molecules from marine bacteria has been summarized considering the main phylum and sources evolved in a marine environment. Considering the last two decades, we have found as most studied group of bacteria producers of substances with antimicrobial activity is the Firmicutes phylum, in particular strains of the Bacillus genus. The reason for that can be attributed to the difficult cultivation of typical Actinobacteria from a marine sediment, whose members are the major producers of antimicrobial substances in land environments. However, a reversed trend has been observed in recent years with an increasing number of reports settling on Actinobacteria. Great diversity of chemical structures have been identified, such as fijimicyns and lynamicyns from Actinomycetes and macrolactins produced by Bacillus.


Assuntos
Antibacterianos/química , Antibacterianos/isolamento & purificação , Bactérias/classificação , Bactérias/metabolismo , Água do Mar/microbiologia , Actinobacteria , Biodiversidade , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Firmicutes/metabolismo , Sedimentos Geológicos/microbiologia , Filogenia , Alga Marinha/microbiologia
20.
Emerg Infect Dis ; 26(2): 323-326, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961301

RESUMO

We report transcontinental expansion of Vibrio parahaemolyticus sequence type 36 into Lima, Peru. From national collections, we identified 7 isolates from 2 different Pacific Northwest complex lineages that surfaced during 2011-2016. Sequence type 36 is likely established in environmental reservoirs. Systematic surveillance enabled detection of these epidemic isolates.


Assuntos
Vibrioses/epidemiologia , Vibrio parahaemolyticus/isolamento & purificação , Demografia , Surtos de Doenças , Humanos , Epidemiologia Molecular , Peru/epidemiologia , Vibrioses/microbiologia , Vibrio parahaemolyticus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA