Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(41): 94850-94864, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37540415

RESUMO

Pollution by synthetic polymers is even more problematic to the environment when this material is fragmented into small portions, forming microplastics (MPs). We analyzed the contamination of ichthyofauna by MPs in an important river of the Atlantic Rainforest in regard to abundance, diversity of morphotypes, polymers, colors, and sizes of the synthetic particles in 20 species of fish. Fish were collected in November 2019 and in March 2020 in five sites along the Pomba River. Of the 101 fish analyzed, 49 (49%) presented MPs in at least one organ. Of the 20 species of fish collected 13 included individuals with at least one MP in their analyzed organs. The organs, trophic categories and feeding areas did not affect the general abundance of MPs types. Blue MPs were predominant, followed by the colors black, red, and white. MP fibers represented 91% of total MPs. Most MPs were between 2 and 3 mm in size. Polyethylene terephthalate (PET), polypropylene (PP), polyamide (PA), polyvinylidene chloride "Nylon" (PVDC), and high-density polyethylene (HDPE) were detected in the fishes. The exposure of the fish species to MPs was associated mainly with individual size and species-specific aspects, regardless of ecological traits. Considering that 55% of the fish species studied are consumed by humans, it is necessary to study the potential impact of MP ingestion on human health and to understand to what extent we may be consuming both plastic particles and contaminants that are adsorbed to MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Plásticos , Rios , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Nylons , Peixes
2.
Chemosphere ; 338: 139493, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451634

RESUMO

Rivers are known for carrying out a fundamental role in the transportation of human debris from continental areas to the marine environment and have been identified as hotspots for plastic pollution. We characterized microplastics (MPs) along confluence areas in the Paraíba do Sul River basin, the biggest river in southeastern Brazil. This water body crosses highly industrialized areas, with the highest population density, and the major water demand in South America. Considering the important ecological function of this extensive watershed and the implications of MP pollution, we evaluate the spatial variation of MP concentration in the confluence areas and upstream from the confluence. Samples were taken from the superficial layer of the water column in February and June 2022, using manta net with 300 µm mesh size. A total of 19 categories and 2870 plastic particles were determined. The confluences areas of rivers showed the highest concentration of MPs, highlighting the confluences of the Paraiba do Sul and Muriaé rivers (0.71 ± 0.25 MP/m3), followed by Paraíba do Sul and Dois Rios rivers (0.42 ± 0.23 MP/m3) and Paraíba do Sul and Pomba rivers (0.38 ± 0.14 MP/m3). Black fibers were the main category, followed by blue fibers and blue fragments. The MPs in the surface waters of Paraíba do Sul River is significantly influenced by the sampling points spatiality. This result corroborates other studies around the world and reinforces the argument that affluents are important sources for the introduction of MPs in larger rivers. Nevertheless, our results provide a better understanding of the different contributing factors and occurrence of MPs in river basins.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Rios , Plásticos , Água , Brasil , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 843: 157106, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779719

RESUMO

Climate projections models indicate that longer periods of droughts are expected within the next 100 years in various parts of South America. To understand the effects of longer periods of droughts on aquatic environments, we investigated the response of chlorophyll-a (Chl-a) concentration to recent severe drought events in the Barra Bonita Hydroelectric Reservoir (BBHR) in São Paulo State, Brazil. We used satellite imagery to estimate the Chl-a concentration from 2014 to 2020 using the Slope Index (NRMSE of 18.92% and bias of -0.20 mg m-3). Ancillary data such as precipitation, water level and air temperature from the same period were also used. Drought events were identified using the standardized precipitation index (SPI). In addition, we computed the probability of future drought events. Two periods showed extremely dry conditions: 1) January-February (2014) and 2) April-May (2020). Both periods were characterized by a recurrence probability of 1in every 50 years. The highest correlation was observed between Chl-a concentration and SPI (-0.97) in 2014, while Chl-a had had the highest correlation with water level (-0.59) in 2020. These results provide new insights into the influence of extreme drought events on the Chl-a concentration in the BBHR and their relationship with other climate variables and reservoir water levels. Drought events imply less rainfall, higher temperatures, and atmospheric dryness, and these factors affect evaporation and the water levels in the reservoir.


Assuntos
Clorofila , Secas , Brasil , Clorofila A , Estações do Ano , Água
4.
Sci Total Environ ; 824: 153752, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35176388

RESUMO

For the last two decades different scientific disciplines have focused on lacustrine dissolved organic matter (DOM) given its importance in the biogeochemistry of carbon and in ecosystem functioning. New satellites supply the appropriate resolutions to evaluate chromophoric dissolved organic matter (CDOM) in inland waters, opening the possibility to estimate DOM at appropriate spatiotemporal scales. This requires, however, a robust relationship between CDOM and dissolved organic carbon (DOC). In this work, we evaluated the use of CDOM as a proxy of DOC in 7 Andean Patagonian lakes. Considering the entire data set, CDOM absorption coefficients (a355 and a440) were linearly related with DOC. Shallow lakes, however, drove this relationship showing a moderate relationship, whereas, deep lakes with lower colour presented a weaker relationship. Therefore, we assessed the use of CDOM spectral shape information to improve DOC estimates regardless of observed DOM differences due to climatic seasonality and lakes' morphometry. The use of well-known CDOM spectral shape metrics (i.e., S275-295 and a250:a365 ratio) significantly improved DOC estimation. Particularly, using a Gaussian decomposition approach we found that much of the variation in the spectral shape, associated with the variability of CDOM:DOC ratio, was explained by differences in two dynamic regions centred at 270 and 320 nm. A strong nonlinear relationship was found between the a270:a320 ratio and the DOC-specific absorption coefficients a*355 and a*440. This was translated into a further improvement in DOC estimation yielding the higher R2 and lower mean absolute differences (MAPD < 16%), either considering the entire data set or shallow and deep lakes separately. Our results highlight that incorporating the CDOM spectral shape information improves the characterization of the DOC pool of inland waters, which is particularly relevant for remote and/or inaccessible sites and has significant implications for the environmental management, biogeochemical studies and future remote sensing applications.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Carbono , Ecossistema , Lagos/química
5.
Sensors (Basel) ; 21(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203863

RESUMO

Remote Sensing, as a driver for water management decisions, needs further integration with monitoring water quality programs, especially in developing countries. Moreover, usage of remote sensing approaches has not been broadly applied in monitoring routines. Therefore, it is necessary to assess the efficacy of available sensors to complement the often limited field measurements from such programs and build models that support monitoring tasks. Here, we integrate field measurements (2013-2019) from the Mexican national water quality monitoring system (RNMCA) with data from Landsat-8 OLI, Sentinel-3 OLCI, and Sentinel-2 MSI to train an extreme learning machine (ELM), a support vector regression (SVR) and a linear regression (LR) for estimating Chlorophyll-a (Chl-a), Turbidity, Total Suspended Matter (TSM) and Secchi Disk Depth (SDD). Additionally, OLCI Level-2 Products for Chl-a and TSM are compared against the RNMCA data. We observed that OLCI Level-2 Products are poorly correlated with the RNMCA data and it is not feasible to rely only on them to support monitoring operations. However, OLCI atmospherically corrected data is useful to develop accurate models using an ELM, particularly for Turbidity (R2 = 0.7). We conclude that remote sensing is useful to support monitoring systems tasks, and its progressive integration will improve the quality of water quality monitoring programs.


Assuntos
Tecnologia de Sensoriamento Remoto , Qualidade da Água , Clorofila A , Monitoramento Ambiental , Água
6.
Ambio ; 50(7): 1313-1324, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33543362

RESUMO

Plastics are dominant pollutants in freshwater ecosystems worldwide. Scientific studies that investigated the interaction between plastics and freshwater biodiversity are incipient, especially if compared to the marine realm. In this review, we provide a brief overview of plastic pollution in freshwater ecosystems around the world. We found evidence of plastic ingestion by 206 freshwater species, from invertebrates to mammals, in natural or semi-natural ecosystems. In addition, we reported other consequences of synthetic polymers in freshwater ecosystems-including, for instance, the entanglement of animals of different groups (e.g., birds). The problem of plastic pollution is complex and will need coordinated actions, such as recycling programs, correct disposal, stringent legislation, regular inspection, replacement of synthetic polymers with other materials, and ecological restoration. Current information indicates that the situation in freshwater ecosystems may be as detrimental as the pollution found in the ocean, although highly underappreciated.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Biodiversidade , Ecossistema , Monitoramento Ambiental , Água Doce , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Environ Monit Assess ; 189(8): 395, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28710691

RESUMO

This study evaluated the suitability of 21 inland waters (16 well waters and 5 surface waters) from Northwest Mexico via short- (48 h) and medium-term (28 days) tests using postlarvae (PL18) of Litopenaeus vannamei. In the short test, survival was assessed at 48 h after shrimp were placed in groups of 10 postlarvae into 2-L containers of inland water, to which they had been previously acclimated. The second, medium-term test consisted of four replicates with 10 postlarvae, and each group was placed in 15-L containers with the treatment water. Weights (initial and final) and survival were evaluated weekly for 28 days. In those waters for which the short test was positive and the medium-term test was negative and which also had a deficiency of potassium and/or magnesium, a third test was conducted. These last waters were supplemented with salts, and the shrimp survival and weights (initial and final) were recorded for 28 days. The water samples from San Jose, Mochicahui, Sinaloa River, Caimanero inner Lagoon, La Pipima, Campo Santa Fe, Escopama, and Fitmar had >60% survival in the short test. The Caimanero inner Lagoon water had the highest survival (87.5 ± 9.6%) and final mean weight (201.3 ± 86.2 mg). In the third test, it was found that shrimp in the water from La Pipima, Campo Santa Fe, and Fitmar exhibited 100% survival for 2 weeks. Finally, in this work, a decision tree to evaluate the suitability of low-salinity water for shrimp farming was proposed, which can be applied in other regions.


Assuntos
Monitoramento Ambiental , Penaeidae/fisiologia , Frutos do Mar , Água/química , Animais , Aquicultura , Suplementos Nutricionais , Magnésio/metabolismo , México , Penaeidae/crescimento & desenvolvimento , Potássio/metabolismo , Sais/metabolismo , Qualidade da Água
8.
Int Microbiol ; 18(2): 105-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26496618

RESUMO

The aim of this study was to determine the contributions of stochastic vs. deterministic processes in the distribution of microbial diversity in four ponds (Pozas Azules) within a temporally stable aquatic system in the Cuatro Cienegas Basin, State of Coahuila, Mexico. A sampling strategy for sites that were geographically delimited and had low environmental variation was applied to avoid obscuring distance effects. Aquatic bacterial diversity was characterized following a culture-independent approach (16S sequencing of clone libraries). The results showed a correlation between bacterial beta diversity (1-Sorensen) and geographic distance (distance decay of similarity), which indicated the influence of stochastic processes related to dispersion in the assembly of the ponds' bacterial communities. Our findings are the first to show the influence of dispersal limitation in the prokaryotic diversity distribution of Cuatro Cienegas Basin.


Assuntos
Bactérias/isolamento & purificação , Água Doce/microbiologia , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Ecossistema , México , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Processos Estocásticos
9.
Braz. j. biol ; Braz. j. biol;72(3,supl): 709-722, Aug. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-649324

RESUMO

Although only a small amount of the Earth's water exists as continental surface water bodies, this compartment plays an important role in the biogeochemical cycles connecting the land to the atmosphere. The territory of Brazil encompasses a dense river net and enormous number of shallow lakes. Human actions have been heavily influenced by the inland waters across the country. Both biodiversity and processes in the water are strongly driven by seasonal fluvial forces and/or precipitation. These macro drivers are sensitive to climate changes. In addition to their crucial importance to humans, inland waters are extremely rich ecosystems, harboring high biodiversity, promoting landscape equilibrium (connecting ecosystems, maintaining animal and plant flows in the landscape, and transferring mass, nutrients and inocula), and controlling regional climates through hydrological-cycle feedback. In this contribution, we describe the aquatic ecological responses to climate change in a conceptual perspective, and we then analyze the possible climate-change scenarios in different regions in Brazil. We also indentify some potential biogeochemical signals in running waters, natural lakes and man-made impoundments. The possible future changes in climate and aquatic ecosystems in Brazil are highly uncertain. Inland waters are pressured by local environmental changes because of land uses, landscape fragmentation, damming and diversion of water bodies, urbanization, wastewater load, and level of pollutants can alter biogeochemical patterns in inland waters over a shorter term than can climate changes. In fact, many intense environmental changes may enhance the effects of changes in climate. Therefore, the maintenance of key elements within the landscape and avoiding extreme perturbation in the systems are urgent to maintain the sustainability of Brazilian inland waters, in order to prevent more catastrophic future events.


Embora apenas uma pequena quantidade de água da Terra esteja reservada em corpos d'água da superfície continental, esses ambientes desempenham papel importante nos ciclos biogeoquímicos, conectando a superfície à atmosfera. O território brasileiro é recortado por uma densa rede fluvial e exibe um enorme número de lagos rasos. Impactos de natureza humana têm sido intensos modificadores de ecossistemas límnicos. A biodiversidade e os processos ecossistêmicos são fortemente modulados por forças sazonais fluvial e/ou precipitação. Essas macroforçantes ecológicas respondem às mudanças climáticas. As águas interiores são ecossistemas com elevada biodiversidade, promovem transferências de energia dentro da paisagem, conectando os ecossistemas, e atuam na manutenção de fluxos de matérias - animais, vegetais, nutrientes e inóculos. Esses ecossistemas controlam o clima numa escala regional. Neste capítulo, são descritas algumas respostas dos ecossistemas aquáticos às alterações climáticas, tanto conceitualmente como analisando os possíveis cenários de mudanças climáticas em diferentes regiões no Brasil. Potenciais sinais biogeoquímicos em diferentes ecossistemas límnicos brasileiros foram identificados. Os ecossistemas límnicos são pressionados pelas atividades do uso do solo, pela fragmentação da paisagem, pelo represamento e pelo desvio de rios, pela urbanização, pela carga de águas residuais e do nível de poluentes. Essas ações perturbadoras podem alterar os padrões biogeoquímicos nas águas interiores numa escala temporal mais curta quando comparada às mudanças climáticas. A manutenção da sustentabilidade das ecossistemas aquáticos brasileiros é urgente de modo a prevenir futuros eventos catastróficos.


Assuntos
Animais , Humanos , Biota , Mudança Climática , Monitoramento Ambiental/métodos , Ciclo Hidrológico , Brasil , Lagos , Rios , Estações do Ano
10.
Braz. j. biol ; Braz. j. biol;72(3)Aug. 2012.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468122

RESUMO

Although only a small amount of the Earth's water exists as continental surface water bodies, this compartment plays an important role in the biogeochemical cycles connecting the land to the atmosphere. The territory of Brazil encompasses a dense river net and enormous number of shallow lakes. Human actions have been heavily influenced by the inland waters across the country. Both biodiversity and processes in the water are strongly driven by seasonal fluvial forces and/or precipitation. These macro drivers are sensitive to climate changes. In addition to their crucial importance to humans, inland waters are extremely rich ecosystems, harboring high biodiversity, promoting landscape equilibrium (connecting ecosystems, maintaining animal and plant flows in the landscape, and transferring mass, nutrients and inocula), and controlling regional climates through hydrological-cycle feedback. In this contribution, we describe the aquatic ecological responses to climate change in a conceptual perspective, and we then analyze the possible climate-change scenarios in different regions in Brazil. We also indentify some potential biogeochemical signals in running waters, natural lakes and man-made impoundments. The possible future changes in climate and aquatic ecosystems in Brazil are highly uncertain. Inland waters are pressured by local environmental changes because of land uses, landscape fragmentation, damming and diversion of water bodies, urbanization, wastewater load, and level of pollutants can alter biogeochemical patterns in inland waters over a shorter term than can climate changes. In fact, many intense environmental changes may enhance the effects of changes in climate. Therefore, the maintenance of key elements within the landscape and avoiding extreme perturbation in the systems are urgent to maintain the sustainability of Brazilian inland waters, in order to prevent more catastrophic future events.


Embora apenas uma pequena quantidade de água da Terra esteja reservada em corpos d'água da superfície continental, esses ambientes desempenham papel importante nos ciclos biogeoquímicos, conectando a superfície à atmosfera. O território brasileiro é recortado por uma densa rede fluvial e exibe um enorme número de lagos rasos. Impactos de natureza humana têm sido intensos modificadores de ecossistemas límnicos. A biodiversidade e os processos ecossistêmicos são fortemente modulados por forças sazonais fluvial e/ou precipitação. Essas macroforçantes ecológicas respondem às mudanças climáticas. As águas interiores são ecossistemas com elevada biodiversidade, promovem transferências de energia dentro da paisagem, conectando os ecossistemas, e atuam na manutenção de fluxos de matérias - animais, vegetais, nutrientes e inóculos. Esses ecossistemas controlam o clima numa escala regional. Neste capítulo, são descritas algumas respostas dos ecossistemas aquáticos às alterações climáticas, tanto conceitualmente como analisando os possíveis cenários de mudanças climáticas em diferentes regiões no Brasil. Potenciais sinais biogeoquímicos em diferentes ecossistemas límnicos brasileiros foram identificados. Os ecossistemas límnicos são pressionados pelas atividades do uso do solo, pela fragmentação da paisagem, pelo represamento e pelo desvio de rios, pela urbanização, pela carga de águas residuais e do nível de poluentes. Essas ações perturbadoras podem alterar os padrões biogeoquímicos nas águas interiores numa escala temporal mais curta quando comparada às mudanças climáticas. A manutenção da sustentabilidade das ecossistemas aquáticos brasileiros é urgente de modo a prevenir futuros eventos catastróficos.

11.
Braz. J. Biol. ; 72(3)2012.
Artigo em Inglês | VETINDEX | ID: vti-446901

RESUMO

Although only a small amount of the Earth's water exists as continental surface water bodies, this compartment plays an important role in the biogeochemical cycles connecting the land to the atmosphere. The territory of Brazil encompasses a dense river net and enormous number of shallow lakes. Human actions have been heavily influenced by the inland waters across the country. Both biodiversity and processes in the water are strongly driven by seasonal fluvial forces and/or precipitation. These macro drivers are sensitive to climate changes. In addition to their crucial importance to humans, inland waters are extremely rich ecosystems, harboring high biodiversity, promoting landscape equilibrium (connecting ecosystems, maintaining animal and plant flows in the landscape, and transferring mass, nutrients and inocula), and controlling regional climates through hydrological-cycle feedback. In this contribution, we describe the aquatic ecological responses to climate change in a conceptual perspective, and we then analyze the possible climate-change scenarios in different regions in Brazil. We also indentify some potential biogeochemical signals in running waters, natural lakes and man-made impoundments. The possible future changes in climate and aquatic ecosystems in Brazil are highly uncertain. Inland waters are pressured by local environmental changes because of land uses, landscape fragmentation, damming and diversion of water bodies, urbanization, wastewater load, and level of pollutants can alter biogeochemical patterns in inland waters over a shorter term than can climate changes. In fact, many intense environmental changes may enhance the effects of changes in climate. Therefore, the maintenance of key elements within the landscape and avoiding extreme perturbation in the systems are urgent to maintain the sustainability of Brazilian inland waters, in order to prevent more catastrophic future events.


Embora apenas uma pequena quantidade de água da Terra esteja reservada em corpos d'água da superfície continental, esses ambientes desempenham papel importante nos ciclos biogeoquímicos, conectando a superfície à atmosfera. O território brasileiro é recortado por uma densa rede fluvial e exibe um enorme número de lagos rasos. Impactos de natureza humana têm sido intensos modificadores de ecossistemas límnicos. A biodiversidade e os processos ecossistêmicos são fortemente modulados por forças sazonais fluvial e/ou precipitação. Essas macroforçantes ecológicas respondem às mudanças climáticas. As águas interiores são ecossistemas com elevada biodiversidade, promovem transferências de energia dentro da paisagem, conectando os ecossistemas, e atuam na manutenção de fluxos de matérias - animais, vegetais, nutrientes e inóculos. Esses ecossistemas controlam o clima numa escala regional. Neste capítulo, são descritas algumas respostas dos ecossistemas aquáticos às alterações climáticas, tanto conceitualmente como analisando os possíveis cenários de mudanças climáticas em diferentes regiões no Brasil. Potenciais sinais biogeoquímicos em diferentes ecossistemas límnicos brasileiros foram identificados. Os ecossistemas límnicos são pressionados pelas atividades do uso do solo, pela fragmentação da paisagem, pelo represamento e pelo desvio de rios, pela urbanização, pela carga de águas residuais e do nível de poluentes. Essas ações perturbadoras podem alterar os padrões biogeoquímicos nas águas interiores numa escala temporal mais curta quando comparada às mudanças climáticas. A manutenção da sustentabilidade das ecossistemas aquáticos brasileiros é urgente de modo a prevenir futuros eventos catastróficos.

12.
Rev. biol. trop ; Rev. biol. trop;56(3): 1159-1178, sep. 2008. ilus
Artigo em Inglês | LILACS | ID: lil-637855

RESUMO

In the tropical and subtropical regions, there is a large number of species which has not been yet described. The high possibility of extinction makes their inventory a priority. In this paper, 23 diatoms taxa from Andean lotic systems and lentic waterbodies localized in the Departments of Antioquia, Santander and Chocó, Colombia, are analyzed with light and scanning electron microscopy. Each taxon is described and information about environmental characteristic of the sites where they were collected and distribution in Colombia is given. The studied taxa belong to the orders Thalassiosirales (1), Aulacoseirales (1), Fragilariales (4), Cymbellales (7), Achnanthales (2), Naviculales (7), and Thalassiophysales (1). Fifteen of them are recorded for the first time in Colombia and Encyonema jemtlandicum in South America. A comparison with the diatom flora of the Colombian Amazonia showed that there were only three taxa in common to these two equatorial regions probably due to the influence of altitudinal gradient. Rev. Biol. Trop. 56 (3): 1159-1178. Epub 2008 September 30.


En este artículo se analizan con microscopios de luz y electrónico de barrido 23 taxones de diatomeas provenientes de sistemas lénticos y lóticos andinos localizados en los Departamentos de Antioquia, Santander y Chocó, Colombia. Cada taxon es descrito e ilustrado y se brinda información acerca de su distribución en Colombia y de las condiciones físicas y químicas en las que fueron colectados. Los taxones estudiados pertenecen a los órdenes Thalassiosirales (1), Aulacoseirales (1), Fragilariales (4), Cymbellales (7), Achnanthales (2), Naviculales (7) y Thalassiophysales (1). 15 de ellos son registrados por primera vez para Colombia y Encyonema jemtlandicum es primer registro para América del Sur. Una comparación con la flora diatomológica de la Amazonía Colombiana, mostró que únicamente 3 taxones fueron hallados en ambas regiones, probablemente debido a la influencia de los gradientes altitudinales.


Assuntos
Animais , Diatomáceas/classificação , Altitude , Colômbia , Diatomáceas/ultraestrutura , Água Doce , Microscopia Eletrônica de Varredura , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA