RESUMO
PURPOSE: For growth of methylotrophic yeast, glycerol is usually used as a carbon source. Glucose is used in some cases, but not widely consumed due to strong repressive effect on AOX1 promoter. However, glucose is still considered as a carbon source of choice since it has low production cost and guarantees growth rate comparable to glycerol. RESULTS: In flask cultivation of the recombinant yeast, Pichia pastoris GS115(pPIC9K-appA38M), while methanol induction point(OD600) and methanol concentration significantly affected the phytase expression, glucose addition in induction phase could enhance phytase expression. The optimal flask cultivation conditions illustrated by Response Surface Methodology were 10.37 OD600 induction point, 2.02 h before methanol feeding, 1.16% methanol concentration and 40.36µL glucose feeding amount(for 20 mL culture volume) in which the expressed phytase activity was 613.4 ± 10.2U/mL, the highest activity in flask cultivation. In bioreactor fermentation, the intermittent glucose feeding showed several advantageous results such as 68 h longer activity increment, 149.2% higher cell density and 200.1% higher activity compared to the sole methanol feeding method. These results implied that remaining glucose at induction point might exhibit a positive effect on the phytase expression. CONCLUSION: Glucose intermittent feeding could be exploited for economic phytase production and the other recombinant protein expression by P. pastoris GS115.
Assuntos
6-Fitase , Reatores Biológicos , Fermentação , Glucose , Metanol , Proteínas Recombinantes , 6-Fitase/genética , 6-Fitase/metabolismo , Glucose/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Metanol/metabolismo , Reatores Biológicos/microbiologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Pichia/genética , Pichia/metabolismo , Pichia/crescimento & desenvolvimento , Expressão GênicaRESUMO
Xanthomonas is an important genus of plant-associated bacteria that causes significant yield losses of economically important crops worldwide. Different approaches have assessed genetic diversity and evolutionary interrelationships among the Xanthomonas species. However, information from clustered regularly interspaced short palindromic repeats (CRISPRs) has yet to be explored. In this work, we analyzed the architecture of CRISPR-Cas loci and presented a sequence similarity-based clustering of conserved Cas proteins in different species of Xanthomonas. Although absent in many investigated genomes, Xanthomonas harbors subtype I-C and I-F CRISPR-Cas systems. The most represented species, Xanthomonas citri, presents a great diversity of genome sequences with an uneven distribution of the CRISPR-Cas systems among the subspecies/pathovars. Only X. citri subsp. citri and X. citri pv. punicae have these systems, exclusively of subtype I-C system. Moreover, the most likely targets of the X. citri CRISPR spacers are viruses (phages). At the same time, few are plasmids, indicating that CRISPR/Cas system is possibly a mechanism to control the invasion of foreign DNA. We also showed in X. citri susbp. citri that the cas genes are regulated by the diffusible signal factor, the quorum sensing (QS) signal molecule, according to cell density increases, and under environmental stress like starvation. These results suggest that the regulation of CRISPR-Cas by QS occurs to activate the gene expression only during phage infection or due to environmental stresses, avoiding a possible reduction in fitness. Although more studies are needed, CRISPR-Cas systems may have been selected in the Xanthomonas genus throughout evolution, according to the cost-benefit of protecting against biological threats and fitness maintenance in challenging conditions.
Assuntos
Bacteriófagos , Xanthomonas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Percepção de Quorum/genética , Plasmídeos , Xanthomonas/genética , Xanthomonas/metabolismo , Bacteriófagos/genéticaRESUMO
BACKGROUND: Fed-batch mode is the standard culture technology for industrial bioprocesses. Nevertheless, most of the early-stage cell and process development is carried out in batch cultures, which can bias the initial selection of expression systems. Cell engineering can provide an alternative to fed-batch cultures for high-throughput screening and host selection. We have previously reported a library of Escherichia coli strains with single and multiple deletions of genes involved in glucose transport. Compared to their wild type (W3110), the mutant strains displayed lower glucose uptake, growth and aerobic acetate production rates. Therefore, when cultured in batch mode, such mutants may perform similar to W3110 cultured in fed-batch mode. To test that hypothesis, we evaluated the constitutive expression of the green fluorescence protein (GFP) in batch cultures in microbioreactors using a semi defined medium supplemented with 10 or 20 g/L glucose + 0.4 g yeast extract/g glucose. RESULTS: The mutant strains cultured in batch mode displayed a fast-growth phase (growth rate between 0.40 and 0.60 h-1) followed by a slow-growth phase (growth rate between 0.05 and 0.15 h-1), similar to typical fed-batch cultures. The phase of slow growth is most probably caused by depletion of key amino acids. Three mutants attained the highest GFP fluorescence. Particularly, a mutant named WHIC (ΔptsHIcrr, ΔmglABC), reached a GFP fluorescence up to 14-fold greater than that of W3110. Strain WHIC was cultured in 2 L bioreactors in batch mode with 100 g/L glucose + 50 g/L yeast extract. These cultures were compared with exponentially fed-batch cultures of W3110 maintaining the same slow-growth of WHIC (0.05 h-1) and using the same total amount of glucose and yeast extract than in WHIC cultures. The WHIC strain produced approx. 450 mg/L GFP, while W3110 only 220 mg/L. CONCLUSION: The combination of cell engineering and high throughput screening allowed the selection of a particular mutant that mimics fed-batch behavior in batch cultures. Moreover, the amount of GFP produced by the strain WHIC was substantially higher than that of W3110 under both, batch and fed-batch schemes. Therefore, our results represent a valuable technology for accelerated bioprocess development.
Assuntos
Técnicas de Cultura Celular por Lotes , Escherichia coli , Transporte Biológico , Reatores Biológicos , Escherichia coli/metabolismo , Glucose/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismoRESUMO
The use of more appropriate kinetic models can assist in improving ethanol fermentation under conditions of very high gravity (VHG) and high cell density (HCD), in order to obtain higher amounts of ethanol in the broth combined with high productivity. The aim of this study was to model fed-batch ethanol fermentation under VHG/HCD conditions, at different temperatures, considering three types of inhibition (substrate, ethanol, and cells). Fermentations were carried out using different temperatures (28 ≤ [Formula: see text] (°C) ≤ 34), inoculum sizes (50 ≤ [Formula: see text] (g L-1) ≤ 125), and substrate concentrations in the must (258 ≤ [Formula: see text] (g L-1) ≤ 436). In the proposed model, the cell inhibition power parameter varied with the temperature and inoculum size, while the cell yield coefficient varied with inoculum size and substrate concentration in the must. Hence, it was possible to propose correlations for the cell inhibition power parameter ([Formula: see text]) and for the cell yield coefficient ([Formula: see text]), as functions of the fermentation conditions. Simulations of fed-batch ethanol fermentations at different temperatures, under VHG/HCD conditions, were performed using the proposed correlations. Experimental validation showed that the model was able to accurately predict the dynamic behavior of the fermentations in terms of the concentrations of viable cells, total cells, ethanol, and substrate.
Assuntos
Hipergravidade , Contagem de Células , Etanol/metabolismo , Fermentação , TemperaturaRESUMO
Plasmid DNA (pDNA) vaccines require high supercoiled-pDNA doses (milligrams) to achieve an adequate immune response. Therefore, processes development to obtain high pDNA yields and productivity is crucial. pDNA production is affected by several factors including culture type, medium composition, and growth conditions. We evaluated the effect of kanamycin concentration and temperature on pDNA production, overflow metabolism (organic acids) and metabolic burden (neomycin phosphotransferase II) in batch and fed-batch cultures of Escherichia coli DH5α-pVAX1-NH36. Results indicated that high kanamycin concentration increases the volumetric productivity, volumetric and specific yields of pDNA when batch cultures were carried out at 42 °C, and overflow metabolism reduced but metabolic burden increased. Micrographs taken with a scanning electron microscope (SEM) were analyzed, showing important morphological changes. The high kanamycin concentration (300 mg/L) was evaluated in high cell density culture (50 gDCW/L), which was reached using a fed-batch culture with temperature increase by controlling heating and growth rates. The pDNA volumetric yield and productivity were 759 mg/L and 31.19 mg/L/h, respectively, two-fold greater than the control with a kanamycin concentration of 50 mg/L. A stress-based process simultaneously caused by temperature and high kanamycin concentration can be successfully applied to increase pDNA production.
RESUMO
The recent spread of Zika virus (ZIKV) in the Americas and the Pacific has reached alarming levels in more than 60 countries. However, relatively little is known about the disease on a virological and epidemiological level and its consequences for humans. Accordingly, a large demand for in vitro derived Brazilian ZIKV material to support in vitro and in vivo studies has arisen. However, a prompt supply of ZIKV and ZIKV antigens cannot be guaranteed as the production of this virus typically using Vero or C6/36 cell lines remains challenging. Here we present a production platform based on BHK-21 suspension (BHK-21SUS) cells to propagate Brazilian ZIKV at larger quantities in perfusion bioreactors. Scouting experiments performed in tissue culture flasks using adherent BHK-21 and Vero cells have demonstrated similar permissivity and virus yields for four different Brazilian ZIKV isolates. The cell-specific yield of infectious virus particles varied between respective virus strains (1-48PFU/cell), and the ZIKV isolate from the Brazilian state Pernambuco (ZIKVPE) showed to be a best performing isolate for both cell lines. However, infection studies of BHK-21SUS cells with ZIKVPE in shake flasks resulted in poor virus replication, with a maximum titer of 8.9×103PFU/mL. Additional RT-qPCR measurements of intracellular and extracellular viral RNA levels revealed high viral copy numbers within the cell, but poor virus release. Subsequent cultivation in a perfusion bioreactor using an alternating tangential flow filtration system (ATF) under controlled process conditions enabled cell concentrations of about 1.2×107cells/mL, and virus titers of 3.9×107PFU/mL. However, while the total number of infectious virus particles was increased, the cell-specific yield (3.3PFU/cell) remained lower than determined in adherent cell lines. Nevertheless, the established perfusion process allows to provide large amounts of ZIKV material for research and is a first step towards process development for manufacturing inactivated or live-attenuated ZIKV vaccines.
Assuntos
Técnicas de Cultura de Células/métodos , Cultura de Vírus/métodos , Zika virus/crescimento & desenvolvimento , Animais , Reatores Biológicos , Contagem de Células , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Células Vero , Carga Viral , Vacinas Virais , Replicação Viral , Zika virus/fisiologiaRESUMO
This paper addresses the estimation of the specific production rate of intracellular products and the modeling of the bioreactor volume dynamics in high cell density fed-batch reactors. In particular, a new model for the bioreactor volume is proposed, suitable to be used in high cell density cultures where large amounts of intracellular products are stored. Based on the proposed volume model, two forms of a high-order sliding mode observer are proposed. Each form corresponds to the cases with residual biomass concentration or volume measurement, respectively. The observers achieve finite time convergence and robustness to process uncertainties as the kinetic model is not required. Stability proofs for the proposed observer are given. The observer algorithm is assessed numerically and experimentally.
Assuntos
Carga Bacteriana/métodos , Fenômenos Fisiológicos Bacterianos , Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/microbiologia , Carbono/metabolismo , Modelos Biológicos , Contagem de Células , Proliferação de Células/fisiologia , Simulação por ComputadorRESUMO
The present study aimed at developing a strategy to improve the volumetric production of PHAs by Pseudomonas fluorescens S48 using waste frying oil (WFO) as the sole carbon source. For this purpose, several cultivations were set up to steadily improve nutrients supply to attain high cell density and high biopolymer productivity. The production of PHAs was examined in a 14 L bioreactor as one-stage batch, two-stage batch, and high-cell-density fed-batch cultures. The highest value of polymer content in one-stage bioreactor was obtained after 60 h (33.7%). Whereas, the two-stage batch culture increased the polymer content to 50.1% after 54 h. High-cell-density (0.64 g/L) at continuous feeding rate 0.55 mL/l/h of WFO recorded the highest polymer content after 54 h (55.34%). Semi-scale application (10 L working volume) increased the polymer content in one-stage batch, two-stage batch and high cell density fed-batch cultures by about 12.3%, 5.8% and 11.3%, respectively, as compared with that obtained in 2 L fermentation culture. Six different methods for biopolymer extraction were done to investigate their efficiency for optimum polymer recovery. The maximum efficiency of solvent recovery of PHA was attained by chloroform-hypochlorite dispersion extraction. Gas chromatography (GC) analysis of biopolymer produced by Pseudomonas fluorescens S48 indicated that it solely composed of 3-hydrobutyric acid (98.7%). A bioplastic film was prepared from the obtained PHB. The isolate studied shares the same identical sequence, which is nearly the complete 16S rRNA gene. The identity of this sequence to the closest pseudomonads strains is about 98-99%. It was probably closely related to support another meaningful parsiomony analysis and construction of a phylogenetic tree. The isolate is so close to Egyptian strain named EG 639838.
Assuntos
Óleos/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas fluorescens/metabolismo , Reatores Biológicos/microbiologia , Carbono/metabolismo , Cromatografia Gasosa , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , Poli-Hidroxialcanoatos/química , Pseudomonas fluorescens/classificação , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Gerenciamento de ResíduosRESUMO
One of the most important events in fed-batch fermentations is the definition of the moment to start the feeding. This paper presents a methodology for a rational selection of the architecture of an artificial intelligence (AI)system, based on a neural network committee (NNC),which identifies the end of the batch phase. The AI systemwas successfully used during high cell density cultivations of recombinant Escherichia coli. The AI algorithm wasvalidated for different systems, expressing three antigens to be used in human and animal vaccines: fragments of surface proteins of Streptococcus pneumoniae (PspA), clades 1 and 3, and of Erysipelothrix rhusiopathiae (SpaA). Standard feed-forward neural networks (NNs), with a single hidden layer, were the basis for the NNC. The NN architecture with best performance had the following inputs: stirrer speed, inlet air, and oxygen flow rates, carbon dioxide evolution rate, and CO2 molar fraction in the exhaust gas.