Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 203: 67-79, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35090943

RESUMO

Among the matrices for enzyme immobilization, activated carbon has been standing out in immobilization processes due to its properties and to its characteristics that provide superficial modification by inserting new functional groups capable of binding the enzymes forming covalent bonds. In this study the effect of different modification methods of activated carbon (functionalization with genipin, metallization, metallization in the presence of chelating agent, and functionalization with glutaraldehyde) on efficiency of pepsin immobilization was evaluated. The effect of immobilization pH and the reaction medium on hydrolysis activity of bovine casein was also evaluated. The functionalization of activated carbon using iron ions allowed an immobilization capacity of 98.93 mg·g-1, with immobilization efficiency greater than 99%, and enzyme activity of 2.30 U, which was higher than the other modifications, and closer to the enzyme in the native form activity (3.32 U). In general, the carbon surface modifications were responsible for forming more stable bonds between support and enzyme, improving its proteolytic activity (from 1.84 to 2.30 U) when compared to traditional immobilization methods by adsorption and covalent binding using glutaraldehyde (from 1.04 to 1.1 U).


Assuntos
Enzimas Imobilizadas , Pepsina A , Adsorção , Animais , Bovinos , Estabilidade Enzimática , Enzimas Imobilizadas/química , Glutaral/química , Concentração de Íons de Hidrogênio , Pepsina A/metabolismo
2.
Int J Biol Macromol ; 156: 411-419, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32302628

RESUMO

Co-immobilization is a groundbreaking technique for enzymatic catalysis, sometimes strategic, as for dextransucrase and dextranase. In this approach, dextranase hydrolytic action removes the dextran layer that covers dextransucrase reactive groups, improving the immobilization. Another advantage is the synergic effect of the two enzymes towards prebiotic oligosaccharides production. Thus, both enzymes were co-immobilized onto the heterobifunctional support Amino-Epoxy-Glyoxyl-Agarose (AMEG) and the ion exchanger support monoaminoethyl-N-ethyl-agarose (Manae) at pH 5.2 and 10, followed or not by glutaraldehyde treatment. This work is the first attempt to immobilize dextransucrase under alkaline conditions. The immobilized dextransucrase on AMEG support at pH 10 (12.78 ± 0.70 U/g) presents a similar activity of the biocatalyst produced at pH 5.2 (14.95 ± 0.82 U/g). The activity of dextranase immobilized onto Manae was 5-fold higher than the obtained onto AMEG support. However, the operational stability test showed that the biocatalyst produced on AMEG at pH 5.2 kept >60% of both enzyme activities for five batches. The glutaraldehyde treatment was not worthwhile to improve the operational stability of this biocatalyst.


Assuntos
Dextranase/química , Enzimas Imobilizadas/química , Glucosiltransferases/química , Sefarose/química , Catálise , Estabilidade Enzimática , Glutaral/química , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA