Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
BMC Public Health ; 24(1): 2057, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085807

RESUMO

BACKGROUND: The COVID-19 pandemic has significantly impacted education systems worldwide, with Brazil being one of the countries with the longest school closures. Over a million children and teenagers have been affected, leading to increased hunger and nutritional deficiencies. This study aimed to implement long-term surveillance of SARS-CoV-2 infections in public and private schools in Campo Grande, Brazil, after returning to in-person classes. METHODS: The study involved testing and genomic surveillance at 23 public and private schools in Campo Grande, Mato Grosso do Sul, Brazil, from October 18, 2021 to November 21, 2022. The participants eligible for enrollment were students aged 6-17 years and staff members from school institutions. At the time of collection, participants were asked if they had symptoms in the last two weeks. Whole-genome sequencing of SARS-CoV-2 was conducted to identify circulating variants and to compare them with those detected in the municipality. The demographic data and clinical history of the participants were described, and a logistic regression model was used to understand how the RT-qPCR results could be related to different characteristics. RESULTS: The study included 999 participants, most of whom were women. A total of 85 tests were positive, with an overall positivity rate of 3.2%. The dynamics of case frequency were consistent with those observed in the municipality during the study period. The most common symptoms reported were cough, rhinorrhea, headache, and sore throat. Symptoms were significantly associated with SARS-CoV-2 infection. Eleven lineages were identified in school community samples, with a frequency of occurrence per period similar to that found in the sequences available for the municipality. The most prevalent lineages within the sampling period were BA.2 (59.3%) and BA.5 (29.6%). CONCLUSIONS: Our findings demonstrate that schools can play a crucial role in epidemiological surveillance, helping trigger rapid responses to pathogens such as SARS-CoV-2. Long-term surveillance can be used to track outbreaks and assess the role of children and adults in transmission. It can also contribute to pandemic preparedness, enabling a rapid response to emergencies, such as COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Instituições Acadêmicas , Humanos , COVID-19/epidemiologia , COVID-19/diagnóstico , Brasil/epidemiologia , Adolescente , Criança , Masculino , Feminino , Sequenciamento Completo do Genoma
2.
Vet Res Commun ; 48(5): 3355-3363, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38972932

RESUMO

The overuse of antimicrobials in livestock has contributed to the emergence and selection of clinically relevant multidrug-resistant bacteria. In Brazil, there is no conclusive information on the occurrence of Escherichia coli producing extended-spectrum ß-lactamase (ESßL) in cattle breeding, which is an important sector of agribusiness in this country. Herein, we investigated the presence of ESßL-positive E. coli strains in dairy cattle from a commercial farm with routine practice of therapeutic cephalosporins. Ninety-five rectal swab samples were collected from healthy dairy calves and cows under treatment with ceftiofur. Samples were screened for the presence of ESßL producers, and positive isolates were identified by MALDI-TOF, with subsequent screening for genes encoding ESßL variants by PCR and sequencing. The presence of ESßL (CTX-M-15)-producing E. coli was confirmed in calves, and lactating and dry cows. Most ESßL strains with genetic homologies ≥ 90% were grouped into two major PFGE clusters, confirming the suscessful expansion of clonally related lineages in animals from different lactating cycles, on the same property. Four representatives CTX-M-15-positive E. coli strains had their genomes sequenced, belonging to the clonal complex (CC) 23 and sequence type (ST) 90. A phylogeographical landscape of ST90 was performed revealing a global One Health linkage. Our results highlight the intestinal microbiota of dairy cattle as a hotspot for the spread of critical priority ESßL-producing E. coli and demonstrate that ST90 is an international clone genomically adapted to human and animal hosts, which deserve additional investigation to determine its zoonotic potential and impact in food chain.


Assuntos
Infecções por Escherichia coli , Escherichia coli , beta-Lactamases , Animais , Bovinos , beta-Lactamases/genética , Brasil , Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Feminino , Saúde Única , Doenças dos Bovinos/microbiologia , Antibacterianos/farmacologia , Indústria de Laticínios
3.
Pathogens ; 13(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39057816

RESUMO

Sewage surveillance can be used as an effective complementary tool for detecting pathogens in local communities, providing insights into emerging threats and aiding in the monitoring of outbreaks. In this study using qPCR and whole genomic sewage surveillance, we detected the Mpox virus along with other viruses, in municipal and hospital wastewaters in Belo Horizonte, Brazil over a 9-month period (from July 2022 until March 2023). MPXV DNA detection rates varied in our study, with 19.6% (11 out of 56 samples) detected through the hybrid capture method of whole-genome sequencing and 20% (12 out of 60 samples) through qPCR. In hospital wastewaters, the detection rate was higher, at 40% (12 out of 30 samples) compared to 13.3% (4 out of 30 samples) in municipal wastewaters. This variation could be attributed to the relatively low number of MPXV cases reported in the city, which ranged from 106 to 341 cases during the study period, and the dilution effects, given that each of the two wastewater treatment plants (WWTP) investigated serves approximately 1.1 million inhabitants. Additionally, nine other virus families were identified in both hospitals and municipal wastewaters, including Adenoviridade, Astroviridae, Caliciviridae, Picornaviridade, Polyomaviridae, Coronaviridae (which includes SARS-CoV-2), Herspesviridae, Papillomaviridae and Flaviviridae (notably including Dengue). These findings underscore the potential of genomic sewage surveillance as a robust public health tool for monitoring a wide range of viruses circulating in both community and hospitals environments, including MPXV.

4.
Viruses ; 16(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38932218

RESUMO

Chikungunya virus (CHIKV) is transmitted by mosquito bites and causes chikungunya fever (CHIKF). CHIKV has a single-stranded RNA genome and belongs to a single serotype with three genotypes. The Asian lineage has recently emerged in the Western Hemisphere, likely due to travel-associated introduction. Genetic variation accumulates in the CHIKV genome as the virus replicates, creating new lineages. Whole genome sequencing is ideal for studying virus evolution and spread but is expensive and complex. This study investigated whether specific, highly variable regions of the CHIKV genome could recapitulate the phylogeny obtained with a complete coding sequence (CDS). Our results revealed that concatenated highly variable regions accurately reconstructed CHIKV phylogeny, exhibiting statistically indistinguishable branch lengths and tree confidence compared to CDS. In addition, these regions adequately inferred the evolutionary relationships among CHIKV isolates from the American outbreak with similar results to the CDS. This finding suggests that highly variable regions can effectively capture the evolutionary relationships among CHIKV isolates, offering a simpler approach for future studies. This approach could be particularly valuable for large-scale surveillance efforts.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Variação Genética , Genoma Viral , Filogenia , Vírus Chikungunya/genética , Vírus Chikungunya/classificação , Vírus Chikungunya/isolamento & purificação , Febre de Chikungunya/virologia , Humanos , Genótipo , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Genômica/métodos , Fases de Leitura Aberta , Animais , RNA Viral/genética
5.
Emerg Microbes Infect ; 13(1): 2362941, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38813649

RESUMO

Chikungunya virus (CHIKV) has emerged as a significant public health concern due to its rapid spread and potential for causing debilitating epidemics. In Argentina, the virus has garnered attention since its introduction to the Americas in 2013, due to its growing incidence and impact in neighbouring countries. Here we present a comprehensive analysis of the spatiotemporal dynamics of CHIKV in Argentina, focusing on the evolutionary trajectory of its genetic variants. Through a combination of active surveillance, screening of historical and recent samples, and whole-genome sequencing, we traced the evolutionary history of CHIKV lineages circulating within the country. Our results reveal that two distinct genotypes circulated in Argentina: The Asian lineage during the 2016 epidemic and the ECSA lineage in 2023. This distribution reflects the dominance of particular variants across Latin America. Since 2023, the ECSA lineage has led to a surge in cases throughout the Americas, marking a significant shift. The replacement of lineages in the American region constitutes a major epidemiological event, potentially affecting the dynamics of virus transmission and the clinical outcomes in impacted populations. The spatiotemporal analysis highlights CHIKV's distribution across Argentina and underscores the significant role of human mobility, especially when considering recent epidemics in neighbouring countries such as Paraguay and Uruguay, which have facilitated the spread and introduction of the viral strain into different districts. By integrating epidemiological data with genomic insights, we elucidate the patterns of virus dissemination, highlighting key areas of transmission and potential factors contributing to its spread.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Evolução Molecular , Genótipo , Filogenia , Argentina/epidemiologia , Vírus Chikungunya/genética , Vírus Chikungunya/classificação , Vírus Chikungunya/isolamento & purificação , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Febre de Chikungunya/transmissão , Humanos , Genoma Viral , América Latina/epidemiologia , Sequenciamento Completo do Genoma , Análise Espaço-Temporal , Variação Genética
6.
Front Microbiol ; 15: 1386271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746751

RESUMO

Introduction: A characteristic of the COVID-19 pandemic has been the sequential emergence and global dissemination of SARS-CoV-2 variants, noted for their enhanced transmission efficiency. These variants with mutations in the Spike glycoprotein (S-glycoprotein), which interacts with ACE2 receptors in human cells is critical for infection, affects the transmissibility of the virus, which is a matter of great concern for public health. Objective: This research analyses the effects these variants on a cohort of vaccinated and naturally infected individuals from the cities of Macaé-RJ, Rio das Ostras-RJ, and Campos dos Goytacazes-RJ, Brazil, from March 2021 to March 2023. Methods: This investigation encompasses the Alpha (B.1.1.7), Gamma (P.1), Delta (B.1.617.2, B.1.671.3), and Omicron (BQ.1, BQ.1.1 sublines, and BF.7) variants, focusing on their genomic surveillance and implications for the disease's epidemiology. The experimental analysis included a control group (vaccinated and uninfected subjects), and an infected group (post-vaccinated subjects). Samples from nasopharyngeal swabs underwent viral detection via RT-qPCR for diagnosis confirmation. RNase H-dependent RT-qPCR (rhAmp-PCR) and third-generation sequencing were used to detect SARS-CoV-2 variants. Anti-S-glycoprotein immunoglobulins were also evaluated for vaccinated infected and noninfected volunteers. Symptoms from infected individuals were compiled in order to reveal patterns of clinical signs associated with viral infection. Results: The study included 289 participants, with infections identified by Gamma (n = 44), Delta (n = 189), and Omicron (n = 56) variants. The prevalent symptoms among the naturally infected participants were cough, fever, sore throat, headache, and runny nose. For Omicron, cognitive symptoms such as memory loss and concentration issues were reported. Interestingly, the infected vaccinated group had higher anti-S-glycoprotein IgM production (n = 28, 0.2833 ± 0.09768 OD) compared to the uninfected vaccinated group (n = 14, 0.1035 ± 0.03625 OD). Conversely, anti-S-glycoprotein IgG production was higher in the control group (n = 12, 1.770 ± 0.1393 OD) than in the infected vaccinated group (n = 26, 1.391 ± 0.1563 OD). Conclusion: This comprehensive study enables monitoring of predominant variants and their correlation with clinical cases, providing valuable insights for public health. Our research group continues to survey circulating variants, contributing to the global understanding of the pandemic.

8.
Microbiol Spectr ; 12(6): e0421823, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38651879

RESUMO

SARS-CoV-2 virus emerged as a new threat to humans and spread around the world, leaving a large death toll. As of January 2023, Brazil is among the countries with the highest number of registered deaths. Nonpharmacological and pharmacological interventions have been heterogeneously implemented in the country, which, associated with large socioeconomic differences between the country regions, has led to distinct virus spread dynamics. Here, we investigate the spatiotemporal dispersion of SARS-CoV-2 lineages in the Pernambuco state (Northeast Brazil) throughout the distinct epidemiological scenarios that unfolded in the first 2 years of the pandemic. We generated a total of 1,389 new SARS-CoV-2 genomes from June 2020 to August 2021. This sampling captured the arrival, communitary transmission, and the circulation of the B1.1, B.1.1.28, and B.1.1.33 lineages; the emergence of the former variant of interest P.2; and the emergence and fast replacement of all previous variants by the more transmissible variant of concern P.1 (Gamma). Based on the incidence and lineage spread pattern, we observed an East-to-West to inner state pattern of transmission, which is in agreement with the transmission of more populous metropolitan areas to medium- and small-size country-side cities in the state. Such transmission patterns may be partially explained by the main routes of traffic across municipalities in the state. Our results highlight that the fine-grained intrastate analysis of lineages and incidence spread can provide actionable insights for planning future nonpharmacological intervention for air-borne transmissible human pathogens.IMPORTANCEDuring the COVID-19 pandemic, Brazil was one of the most affected countries, mainly due its continental-size, socioeconomic differences among regions, and heterogeneous implementation of intervention methods. In order to investigate SARS-CoV-2 dynamics in the state of Pernambuco, we conducted a spatiotemporal dispersion study, covering the period from June 2020 to August 2021, to comprehend the dynamics of viral transmission during the first 2 years of the pandemic. Throughout this study, we were able to track three significant epidemiological waves of transmission caused by B1.1, B.1.1.28, B.1.1.33, P.2, and P.1 lineages. These analyses provided valuable insights into the evolution of the epidemiological landscape, contributing to a deeper understanding of the dynamics of virus transmission during the early years of the pandemic in the state of Pernambuco.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Brasil/epidemiologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Análise Espaço-Temporal , Genoma Viral , Filogenia , Pandemias
9.
Infect Genet Evol ; 120: 105590, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574833

RESUMO

The presence of different mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome can be related to changes in coronavirus disease (COVID-19) infection. Besides, these viral alterations associated with factors such as massive number of positive cases, vaccination and reinfections can be important in the viral evolution process. As well as, mutations found at low frequencies may have a more neutral action and consequently be less inclined to negative selection, facilitating their spread through the population. Related to that, we aimed to present mutations that are possibly relevant in the process of viral evolution found in 115 SARS-CoV-2 sequences from samples of individuals residing in the metropolitan region of Porto Alegre in the state of Rio Grande do Sul, Brazil. The genome from clinical samples was sequenced using High-Throughput Sequencing (HTS) and analyzed using a workflow to map reads and find variations/SNPs. The samples were separated into 3 groups considering the sample lineage. Of the total number of analyzed sequences, 35 were from the Gamma lineage, 35 from Delta and 45 from Omicron. Amino acid changes present in frequencies lower than 80% of the reads in the sequences were evaluated. 11 common mutations among the samples were found in the Gamma lineage, 1 in the ORF1ab gene, 7 in the S gene, 2 in the ORF6 gene and 1 in the ORF7a gene. While in the Delta lineage, a total of 11 mutations distributed in the ORF1ab, S, ORF7a and N genes, 2, 7, 1 and 1 mutation were found in each gene, respectively. And finally, in the Omicron, 16 mutations were identified, 2 in the ORF1ab gene, 12 in the S gene and 2 in the M gene. In conclusion, we emphasize that genomic surveillance can be a useful tool to assess how mutations play a key role in virus adaptation, and its process of susceptibility to new hosts showing the possible signs of viral evolution.


Assuntos
COVID-19 , Genoma Viral , Mutação , SARS-CoV-2 , SARS-CoV-2/genética , Humanos , COVID-19/virologia , COVID-19/epidemiologia , Brasil/epidemiologia , Filogenia , Evolução Molecular
10.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38512312

RESUMO

A total of 14 973 alleles in 29 661 sequenced samples collected between March 2021 and January 2023 by the Mexican Consortium for Genomic Surveillance (CoViGen-Mex) and collaborators were used to construct a thorough map of mutations of the Mexican SARS-CoV-2 genomic landscape containing Intra-Patient Minor Allelic Variants (IPMAVs), which are low-frequency alleles not ordinarily present in a genomic consensus sequence. This additional information proved critical in identifying putative coinfecting variants included alongside the most common variants, B.1.1.222, B.1.1.519, and variants of concern (VOCs) Alpha, Gamma, Delta, and Omicron. A total of 379 coinfection events were recorded in the dataset (a rate of 1.28 %), resulting in the first such catalogue in Mexico. The most common putative coinfections occurred during the spread of Delta or after the introduction of Omicron BA.2 and its descendants. Coinfections occurred constantly during periods of variant turnover when more than one variant shared the same niche and high infection rate was observed, which was dependent on the local variants and time. Coinfections might occur at a higher frequency than customarily reported, but they are often ignored as only the consensus sequence is reported for lineage identification.


Assuntos
COVID-19 , Coinfecção , Humanos , México/epidemiologia , Coinfecção/epidemiologia , Alelos , SARS-CoV-2/genética , COVID-19/epidemiologia
11.
Emerg Microbes Infect ; 13(1): 2332672, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38517841

RESUMO

Uruguay experienced its first Chikungunya virus outbreak in 2023, resulting in a significant burden to its healthcare system. We conducted analysis based on real-time genomic surveillance (30 novel whole genomes) to offer timely insights into recent local transmission dynamics and eco-epidemiological factors behind its emergence and spread in the country.


Assuntos
Vírus Chikungunya , Vírus Chikungunya/genética , Uruguai/epidemiologia , América/epidemiologia , Surtos de Doenças , Genômica
12.
Microorganisms ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543500

RESUMO

The aim of this study was to describe epidemiological characteristics and perform SARS-CoV-2 genomic surveillance in the southeastern region of São Paulo State. During the first months of 2022, we compared weekly SARS-CoV-2 infection prevalence considering age, Ct value, and variants' lineages. An increase in the number of SARS-CoV-2-positive cases until the fourth epidemiological week of 2022 was observed. From the fourth epidemiological week onwards, the number of tests for SARS-CoV-2 diagnosis began to decrease, but the number of positive samples for SARS-CoV-2 remained high, reaching its most expressive level with a rate of 60% of infected individual cases. In this period, we observed a progressive increase in SARS-CoV-2 infection within the 0-10 age group throughout the epidemiological weeks, from 2.8% in the first epidemiological week to 9.2% in the eighth epidemiological week of 2022. We further observed significantly higher Ct values within younger patient samples compared to other older age groups. According to lineage assignment, SARS-CoV-2 (BA.1) was the most prevalent (74.5%) in the younger group, followed by BA.1.1 (23%), BA.2 (1.7%), and Delta (1%). Phylogenetic analysis showed that BA.2 sequences clustered together, indicating sustained transmission of this Omicron VOC sub-lineage by that time. Our results suggest the initial dissemination steps of the Omicron's sub-linage BA.2 into the younger group, due to specific genomic features of the detected sequences. These data provide interesting results related to the spread, emergence, and evolution of the Omicron variant in the southeast Brazilian population.

13.
Res Sq ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38343798

RESUMO

Since 2021, the emergence of variants of concern (VOC) has led Brazil to experience record numbers of in COVID-19 cases and deaths. The expanded spread of the SARS-CoV-2 combined with a low vaccination rate has contributed to the emergence of new mutations that may enhance viral fitness, leading to the persistence of the disease. Due to limitations in the real-time genomic monitoring of new variants in some Brazilian states, we aimed to investigate whether genomic surveillance, coupled with epidemiological data and SARS-CoV-2 variants spatiotemporal spread in a smaller region, can reflect the pandemic progression at a national level. Our findings revealed three SARS-CoV-2 variant replacements from 2021 to early 2022, corresponding to the introduction and increase in the frequency of Gamma, Delta, and Omicron variants, as indicated by peaks of the Effective Reproductive Number (Reff). These distinct clade replacements triggered two waves of COVID-19 cases, influenced by the increasing vaccine uptake over time. Our results indicated that the effectiveness of vaccination in preventing new cases during the Delta and Omicron circulations was six and eleven times higher, respectively, than during the period when Gamma was predominant, and it was highly efficient in reducing the number of deaths. Furthermore, we demonstrated that genomic monitoring at a local level can reflect the national trends in the spread and evolution of SARS-CoV-2.

14.
Microbiol Spectr ; 12(3): e0162923, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323826

RESUMO

Oropouche virus (OROV) is characterized as a re-emerging arbovirus of great concern for public health, being responsible for several outbreaks of acute fever identified in Latin American countries, registering more than half a million reported cases. The incidence of reports of this virus is intrinsically favored by environmental conditions, in which such characteristics are related to the increase and distribution of the vector population to areas of human traffic. Moreover, there is a problem regarding the lack of diagnosis in Brazil that aggregates the success of the etiologic agent. Thus, by means of molecular techniques, we identified 27 positive cases of the OROV circulating in border locations in western Amazon, with 44.44% (12/27) of the cohort characterized as infected individuals with reported symptoms, mainly ranging from fever, myalgia, and back pain. Among the positive samples, it was possible to obtain a total of 48.14% (13/27) samples to analyze the S and M segments of Oropouche, which showed similarities among the Brazilian sequences. Thus, it was possible to verify the circulation of the OROV in Rondonia and border areas, in which the tracking of neglected arboviruses is necessary for the genomic surveillance of emerging and re-emerging viruses.IMPORTANCEThe western Amazon region is known for outbreaks of acute febrile illnesses, to which the lack of specific diagnostics for different pathogens hinders the management of patients in healthcare units. The Oropouche virus has already been recorded in the region in the 1990s. However, this is the first study, after this record, to perform the detection of individuals with acute febrile illness using a screening test to exclude Zika, dengue, and chikungunya, confirmed by sequencing the circulation of the virus in the state of Rondonia and border areas. We emphasize the importance of including diagnostics for viruses such as Oropouche, which suffers underreporting for years and is related to seasonal periods in Western Amazon locations, a factor that has a direct influence on public health in the region. In addition, we emphasize the importance of genomic surveillance in the elucidation of outbreaks that affect the resident population of these locations.


Assuntos
Orthobunyavirus , Infecção por Zika virus , Zika virus , Humanos , Orthobunyavirus/genética , Brasil/epidemiologia , Febre , Surtos de Doenças
15.
Microbiol Spectr ; 12(3): e0305623, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334385

RESUMO

Shiga-toxin-producing Escherichia coli (STEC) is associated with diarrhea and hemolytic uremic syndrome (HUS). STEC infections in Costa Rica are rarely reported in children. We gathered all the records of STEC infections in children documented at the National Children's Hospital, a tertiary referral hospital, from 2015 to 2020. Clinical, microbiological, and genomic information were analyzed and summarized. A total of 3,768 diarrheal episodes were reviewed. Among them, 31 STEC were characterized (29 fecal, 1 urine, and 1 bloodstream infection). The prevalence of diarrheal disease due to STEC was estimated at 0.8% (n = 29/3,768), and HUS development was 6.4% (n = 2/31). The stx1 gene was found in 77% (n = 24/31) of STEC strains. In silico genomic predictions revealed a predominant prevalence of serotype O118/O152:H2, accompanied by a cluster exhibiting allele differences ranging from 33 to 8, using a core-genome multilocus sequence typing (cgMLST) approach. This is the first study using a genomic approach for STEC infections in Costa Rica.IMPORTANCEThis study provides a comprehensive description of clinical, microbiological, genomic, and demographic data from patients who attended the only pediatric hospital in Costa Rica with Shiga-toxin-producing Escherichia coli (STEC) infections. Despite the low prevalence of STEC infections, we found a predominant serotype O118/O152:H2, highlighting the pivotal role of genomics in understanding the epidemiology of public health threats such as STEC. Employing a genomic approach for this pathogen for the first time in Costa Rica, we identified a higher prevalence of STEC in children under 2 years old, especially those with gastrointestinal comorbidities, residing in densely populated regions. Limitations such as potential geographic bias and lack of strains due to direct molecular diagnostics are acknowledged, emphasizing the need for continued surveillance to uncover the true extent of circulating serotypes and potential outbreaks in Costa Rica.


Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Criança , Humanos , Lactente , Escherichia coli Shiga Toxigênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Estudos Retrospectivos , Centros de Atenção Terciária , Costa Rica/epidemiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Síndrome Hemolítico-Urêmica/complicações , Síndrome Hemolítico-Urêmica/epidemiologia , Síndrome Hemolítico-Urêmica/microbiologia , Genômica
16.
J Glob Antimicrob Resist ; 36: 389-392, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266960

RESUMO

BACKGROUND: Carbapenemase-producing Citrobacter freundii has been reported as a leading cause of healthcare-associated infections. Particularly, C. freundii belonging to the sequence type (ST) 18 is considered to be an emerging nosocomial clone. OBJECTIVES: To report the genomic background and phylogenomic analysis of a multidrug-resistant NDM-1-producing C. freundii ST18 (strain CF135931) isolated from an endangered green sea turtle affected by plastic pollution in Brazil. METHODS: Genomic DNA was extracted and sequenced using the Illumina NextSeq platform. De novo assembly was performed by CLC Workbench, and in silico analysis accomplished by bioinformatics tools. For phylogenomic analysis, publicly available C. freundii (txid:546) genome assemblies were retrieved from the NCBI database. RESULTS: The genome size was calculated at 5 290 351 bp, comprising 5263 total genes, 4 rRNAs, 77 tRNAs, 11ncRNAs, and 176 pseudogenes. The strain belonged to C. freundii ST18, whereas resistome analysis predicted genes encoding resistance to ß-lactams (blaNDM-1, blaOXA-1, blaCMY-117, and blaTEM-1C), aminoglycosides (aph(3'')-Ib, aadA16, aph(3')-VI, aac(6')-Ib-cr, and aph(6)-Id), quinolones (aac(6')-Ib-cr), macrolides (mph(A) and erm(B)), sulphonamides (sul1 and sul2), tetracyclines (tetA and tetD), and trimethoprim (dfrA27). The phylogenomic analysis revealed that CF135931 strain is closely related to international human-associated ST18 clones producing NDM-1. CONCLUSION: Genomic surveillance efforts are necessary for robust monitoring of the emergence of drug-resistant strains and WHO critical priority pathogens within a One Health framework. In this regard, this draft genome and associated data can improve understanding of dissemination dynamics of nosocomial clones of carbapenemase-producing C. freundii beyond hospital walls. In fact, the emergence of NDM-1-producing C. freundii of global ST18 in wildlife deserves considerable attention.


Assuntos
Infecção Hospitalar , Tartarugas , Animais , Humanos , Citrobacter freundii/genética , Antibacterianos/farmacologia , Genômica , Proteínas Repressoras
17.
Viruses ; 16(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38257783

RESUMO

In recent months, Paraguay has been grappled with a notable monkeypox outbreak, straining its healthcare infrastructure. The sudden spike in cases underlines the imperative need for a comprehensive understanding of the virus's dynamics, enabling the formulation of robust containment measures. To address this challenge, our team joined forces with the Central Public Health Laboratory of Asunción and the Pan-American Health Organization. Through this collaboration, we employed portable whole-genome sequencing combined with phylodynamic analysis to examine the MPXV strains circulating in Paraguay. Our genomic monitoring approach has produced the first 30 whole-genome sequences from Paraguay, all of which were identified under lineage IIb. Interestingly, our data suggest that the origin of the monkeypox virus in Paraguay at the beginning of 2022 can be traced back to Brazil. This introduction subsequently catalyzed further community spread that was further exacerbated by several independent introduction events as time progressed. These findings not only shed light on the transmission patterns of the virus but also highlight the pivotal role such insights play in sculpting effective response strategies and driving impactful public health measures. Furthermore, our findings strongly advocate intensified surveillance at international borders, ensuring swift detection and proactive countermeasures against potential outbreaks in the future.


Assuntos
Epidemias , Mpox , Humanos , Mpox/epidemiologia , Paraguai/epidemiologia , Genômica , Surtos de Doenças
18.
Mar Pollut Bull ; 198: 115844, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056291

RESUMO

Mangrove ecosystems are hotspots of biodiversity, but have been threatened by anthropogenic activities. Vancomycin-resistant enterococci (VRE) are nosocomial bacteria classified as high priority by the World Health Organization (WHO). Herein, we describe the identification and genomic characteristics of a vancomycin-resistant Enterococcus faecalis strain isolated from a highly impacted mangrove ecosystem of the northeastern Brazilian, in 2021. Genomic analysis confirmed the existence of the transposon Tn1546-vanA and clinically relevant antimicrobial resistance genes, such as streptogramins, tetracycline, phenicols, and fluoroquinolones. Virulome analysis identified several genes associated to adherence, immune modulation, biofilm, and exoenzymes production. The UFSEfl strain was assigned to sequence type (ST9), whereas phylogenomic analysis with publicly available genomes from a worldwide confirmed clonal relatedness with a hospital-associated Brazilian clone. Our findings highlight the successful expansion of hospital-associated VRE in a mangrove area and shed light on the need for strengthening genomic surveillance of WHO priority pathogens in these vital ecosystems.


Assuntos
Ecossistema , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Brasil/epidemiologia , Células Clonais , Enterococcus faecalis/genética , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Testes de Sensibilidade Microbiana , Vancomicina , Resistência a Vancomicina/genética , Enterococos Resistentes à Vancomicina/genética , Infecção Hospitalar/microbiologia
19.
J Glob Antimicrob Resist ; 36: 135-138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072242

RESUMO

BACKGROUND: The global spread of extended-spectrum ß-lactamase (ESßL)-producing Escherichia coli has been considered a One Health issue that demands continuous genomic epidemiology surveillance in humans and non-human hosts. OBJECTIVES: To report the occurrence and genomic data of ESßL-producing E. coli strains isolated from South American llamas inhabiting a protected area with public access in the Andean Highlands of Peru. METHODS: Two ESßL-producing E. coli strains (E. coli L1LB and L2BHI) were identified by MALDI-TOF. Genomic DNAs were extracted and sequenced using the Illumina NextSeq platform. De novo assembly was performed by CLC Genomic Workbench and in silico prediction was accomplished by curated bioinformatics tools. SNP-based phylogenomic analysis was performed using publicly available genomes of global E. coli ST10. RESULTS: Escherichia coli L1LB generated a total of 4 000 11 and L2BHI a total of 4 002 54 paired-end reads of ca.164 × and ca. 157 ×, respectively. Both E. coli strains were assigned to serotype O8:H4, fimH41, and ST10. The blaCTX-M-65 ESßL gene, along with other medically important antimicrobial resistance genes, was predicted. Broad virulomes, including the presence of the astA gene, were confirmed. The phylogenomic analysis revealed that E. coli L1LB and L2BHI strains are closely related to isolates from companion animals and human hosts, as well as environmental strains, previously reported in North America, South America, Africa, and Asia. CONCLUSION: Presence of ESßL-producing E. coli ST10 in South American camelids with historical and cultural importance supports successful expansion of international clones of priority pathogens in natural areas with public access.


Assuntos
Camelídeos Americanos , Infecções por Escherichia coli , Animais , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Peru , Antibacterianos/farmacologia , beta-Lactamases/genética , Genômica
20.
J Virol Methods ; 325: 114870, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38086433

RESUMO

Canine parvovirus is a highly contagious pathogen affecting domestic dogs and other carnivores globally. Monitoring CPV through continuous genomic surveillance is crucial for mapping variability and developing effective control measures. Here, we developed a method using multiplex-PCR-next-generation sequencing to obtain full-length CPV genomes directly from clinical samples. This approach utilizes tiling and tailed amplicons to amplify overlapping fragments of roughly 250 base pairs. This enables the creation of Illumina libraries by conducting two PCR reaction runs. We tested the assay in 10 fecal samples from dogs diagnosed with CPV and one CPV-2 vaccine strain. Furthermore, we applied it to a feline sample previously diagnosed with the feline panleukopenia virus. The assay provided 100 % genome coverage and high sequencing depth across all 12 samples. It successfully provided the sequence of the coding regions and the left and right non-translated regions, including tandem and terminal repeats. The assay effectively amplified viral variants from divergent evolutionary groups, including the antigenic variants (2a, 2b, and 2c) and the ancestral CPV-2 strain included in vaccine formulations. Moreover, it successfully amplified the entire genome of the feline panleukopenia virus found in cat feces. This method is cost-effective, time-efficient, and does not require lab expertise in Illumina library preparation. The multiplex-PCR-next-generation methodology facilitates large-scale genomic sequencing, expanding the limited number of complete genomes currently available in databases and enabling real-time genomic surveillance. Furthermore, the method helps identify and track emerging CPV viral variants, facilitating molecular epidemiology and control. Adopting this approach can enhance our understanding of the evolution and genetic diversity of Protoparvovirus carnivoran1.


Assuntos
Doenças do Cão , Infecções por Parvoviridae , Parvovirus Canino , Vacinas , Gatos , Animais , Cães , Parvovirus Canino/genética , Infecções por Parvoviridae/diagnóstico , Vírus da Panleucopenia Felina/genética , Variação Antigênica , Doenças do Cão/diagnóstico , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA