Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 19925, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39261501

RESUMO

The Harpy Eagle (Harpia harpyja) is an iconic species that inhabits forested landscapes in Neotropical regions, with decreasing population trends mainly due to habitat loss, and currently classified as vulnerable. Here, we report on a chromosome-scale genome assembly for a female individual combining long reads, optical mapping, and chromatin conformation capture reads. The final assembly spans 1.35 Gb, with N50scaffold equal to 58.1 Mb and BUSCO completeness of 99.7%. We built the first extensive transposable element (TE) library for the Accipitridae to date and identified 7,228 intact TEs. We found a burst of an unknown TE ~ 13-22 million years ago (MYA), coincident with the split of the Harpy Eagle from other Harpiinae eagles. We also report a burst of solo-LTRs and CR1 retrotransposons ~ 31-33 MYA, overlapping with the split of the ancestor to all Harpiinae from other Accipitridae subfamilies. Comparative genomics with other Accipitridae, the closely related Cathartidae and Galloanserae revealed major chromosome-level rearrangements at the basal Accipitriformes genome, in contrast to a conserved ancient genome architecture for the latter two groups. A historical demography reconstruction showed a rapid decline in effective population size over the last 20,000 years. This reference genome serves as a crucial resource for future conservation efforts towards the Harpy Eagle.


Assuntos
Águias , Genoma , Animais , Águias/genética , Feminino , Elementos de DNA Transponíveis/genética , Filogenia , Evolução Molecular , Retroelementos/genética , Genômica/métodos
2.
Front Mol Biosci ; 11: 1420308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239354

RESUMO

Molecular and cellular characterization of tumors is essential due to the complex and heterogeneous nature of cancer. In recent decades, many bioinformatic tools and experimental techniques have been developed to achieve personalized characterization of tumors. However, sample handling continues to be a major challenge as limitations such as prior treatments before sample acquisition, the amount of tissue obtained, transportation, or the inability to process fresh samples pose a hurdle for experimental strategies that require viable cell suspensions. Here, we present an optimized protocol that allows the recovery of highly viable cell suspensions from breast cancer primary tumor biopsies. Using these cell suspensions we have successfully characterized genome architecture through Hi-C. Also, we have evaluated single-cell gene expression and the tumor cellular microenvironment through single-cell RNAseq. Both technologies are key in the detailed and personalized molecular characterization of tumor samples. The protocol described here is a cost-effective alternative to obtain viable cell suspensions from biopsies simply and efficiently.

3.
Pathogens ; 11(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36297184

RESUMO

The genus Varicosavirus is one of six genera of plant-infecting rhabdoviruses. Varicosaviruses have non-enveloped, flexuous, rod-shaped virions and a negative-sense, single-stranded RNA genome. A distinguishing feature of varicosaviruses, which is shared with dichorhaviruses, is a bi-segmented genome. Before 2017, a sole varicosavirus was known and characterized, and then two more varicosaviruses were identified through high-throughput sequencing in 2017 and 2018. More recently, the number of known varicosaviruses has substantially increased in concert with the extensive use of high-throughput sequencing platforms and data mining approaches. The novel varicosaviruses have revealed not only sequence diversity, but also plasticity in terms of genome architecture, including a virus with a tentatively unsegmented genome. Here, we report the discovery of 45 novel varicosavirus genomes which were identified in publicly available metatranscriptomic data. The identification, assembly, and curation of the raw Sequence Read Archive reads has resulted in 39 viral genome sequences with full-length coding regions and 6 with nearly complete coding regions. The highlights of the obtained sequences include eight varicosaviruses with unsegmented genomes, which are linked to a phylogenetic clade associated with gymnosperms. These findings have resulted in the most complete phylogeny of varicosaviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant rhabdoviruses. Thus, the extensive use of sequence data mining for virus discovery has allowed us to unlock of the hidden genetic diversity of varicosaviruses, the largely neglected plant rhabdoviruses.

4.
Genomics ; 114(3): 110364, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35421559

RESUMO

Accessible chromatin regions (ACRs) are tightly associated with gene expressions in the genome. Conserved non-coding cis-regulatory elements, such as transcription factor binding motifs, are usually found in ACRs, indicating an essential regulatory role of ACRs in the plant genome architecture. However, there have been few studies on soybean ACRs, especially those focusing on specific tissues. Hence, in this study, with the convenient ATAC-seq, we identified the ACRs in six soybean tissues, including root, leaf bud, flower, flower bud, developing seed, and pod. In total, the ACRs occupied about 3.3% of the entire soybean genome. By integrating the results from RNA-seq and transcription factor (TF) ChIP-seq, ACRs were found to be tightly associated with gene expressions and TF binding capacities in soybean. Together, these data provide a comprehensive understanding of the genomic features of ACRs in soybean. As a collection of essential genomic resources, these processed data are made available at datahub.wildsoydb.org.


Assuntos
Cromatina , Glycine max , Cromatina/genética , Glycine max/genética , Glycine max/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Genômica
5.
J Mol Biol ; 432(3): 682-693, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31904354

RESUMO

Eukaryotic genomes are folded in a hierarchical organization that reflects and possibly regulates their function. Genomewide studies revealed a new level of organization at the kilobase-to-megabase scale termed "topological associating domains" (TADs). TADs are characterized as stable units of chromosome organization that restrict the action of regulatory sequences within one "functional unit." Consequently, TADs are expected to appear as physical entities in most cells. Very recent single-cell studies have shown a notable variability in genome architecture at this scale, raising concerns about this model. Furthermore, the direct and simultaneous observation of genome architecture and transcriptional output showed the lack of stable interactions between regulatory sequences in transcribing cells. These findings are consistent with a large body of evidence suggesting that genome organization is highly heterogeneous at different scales. In this review, we discuss the main strategies employed to image chromatin organization, present the latest state-of-the-art developments, and propose an interpretation reconciling population-based findings with direct single-cell chromatin organization observations. All in all, we propose that TADs are made of multiple, low-frequency, low-affinity interactions that increase the probability, but are not deterministic, of regulatory interactions.


Assuntos
Cromatina/química , Cromatina/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Conformação Molecular , Imagem Individual de Molécula , Eucariotos , Microscopia
6.
J Phycol ; 54(6): 775-787, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29989670

RESUMO

Gracilariaceae has a worldwide distribution including numerous economically important species. We applied high-throughput sequencing to obtain organellar genomes (mitochondria and chloroplast) from 10 species of Gracilariaceae and, combined with published genomes, to infer phylogenies and compare genome architecture among species representing main lineages. We obtained similar topologies between chloroplast and mitochondrial genomes phylogenies. However, the chloroplast phylogeny was better resolved with full support. In this phylogeny, Melanthalia intermedia is sister to a monophyletic clade including Gracilaria and Gracilariopsis, which were both resolved as monophyletic genera. Mitochondrial and chloroplast genomes were highly conserved in gene synteny, and variation mainly occurred in regions where insertions of plasmid-derived sequences (PDS) were found. In mitochondrial genomes, PDS insertions were observed in two regions where the transcription direction changes: between the genes cob and trnL, and trnA and trnN. In chloroplast genomes, PDS insertions were in different positions, but generally found between psdD and rrs genes. Gracilariaceae is a good model system to study the impact of PDS in genome evolution due to the frequent presence of these insertions in organellar genomes. Furthermore, the bacterial leuC/leuD operon was found in chloroplast genomes of Gracilaria tenuistipitata, G. chilensis, and M. intermedia, and in extrachromosomal plasmid of G. vermiculophylla. Phylogenetic trees show two different origins of leuC/leuD: genes found in chloroplast and plasmid were placed with proteobacteria, and genes encoded in the nucleus were close to Viridiplantae and cyanobacteria.


Assuntos
Evolução Molecular , Genoma de Cloroplastos/genética , Genoma Mitocondrial/genética , Rodófitas/genética , Filogenia , Análise de Sequência de DNA
7.
Curr Genomics ; 19(2): 87-97, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29491737

RESUMO

Trypanosomatids are a group of kinetoplastid parasites including some of great public health importance, causing debilitating and life-long lasting diseases that affect more than 24 million people worldwide. Among the trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the Leishmania genus are the most well studied parasites, due to their high prevalence in human infections. These parasites have an extreme genomic and phenotypic variability, with a massive expansion in the copy number of species-specific multigene families enrolled in host-parasite interactions that mediate cellular invasion and immune evasion processes. As most trypanosomatids are heteroxenous, and therefore their lifecycles involve the transition between different hosts, these parasites have developed several strategies to ensure a rapid adaptation to changing environments. Among these strategies, a rapid shift in the repertoire of expressed genes, genetic variability and genome plasticity are key mechanisms. Trypanosomatid genomes are organized into large directional gene clusters that are transcribed polycistronically, where genes derived from the same polycistron may have very distinct mRNA levels. This particular mode of transcription implies that the control of gene expression operates mainly at post-transcriptional level. In this sense, gene duplications/losses were already associated with changes in mRNA levels in these parasites. Gene duplications also allow the generation of sequence variability, as the newly formed copy can diverge without loss of function of the original copy. Recently, aneuploidies have been shown to occur in several Leishmania species and T. cruzi strains. Although aneuploidies are usually associated with debilitating phenotypes in superior eukaryotes, recent data shows that it could also provide increased fitness in stress conditions and generate drug resistance in unicellular eukaryotes. In this review, we will focus on gene and chromosomal copy number variations and their relevance to the evolution of trypanosomatid parasites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA