Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2213: 3-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33270188

RESUMO

Like animals, plants use various lipids as signaling molecules to guide their growth and development. The focus of our work is on the N-acylethanolamine (NAE) group of lipid mediators, which have been shown to play important physiological roles in plants. However, mechanisms by which NAEs modulate plant function remain elusive. Chemical genetics has emerged as a potent tool to elucidate signaling pathways in plants, particularly those orchestrated by plant hormones. Like plant hormones, exogenous application of NAEs elicits distinct plant growth phenotypes that can serve as biological readouts for chemical genetic screens. For example, N-lauroylethanolamide (NAE 12:0) inhibits seedling development in the model plant Arabidopsis thaliana. Thus, a library of small synthetic chemical compounds can be rapidly screened for their ability to reverse the inhibitory effect of NAE 12:0 on seedling development. Chemicals identified through such screens could be potential agonists/antagonists of NAE receptors or signaling pathways and therefore serve as additional tools for understanding NAE function in plants. In this chapter, we describe general protocols for NAE 12:0-based chemical genetic screens in Arabidopsis. Although such screens were designed primarily for NAE 12:0, they could potentially be applied for similar work with other NAE species or plant lipid mediators.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Arabidopsis/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Reprodutibilidade dos Testes , Plântula/efeitos dos fármacos , Plântula/genética , Sementes/efeitos dos fármacos , Sementes/genética , Transdução de Sinais/efeitos dos fármacos
2.
Neurotox Res ; 39(2): 146-155, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33141426

RESUMO

Endocannabinoid-based therapies constitute an emerging tool for the potential treatment of neurodegenerative disorders, requiring characterization at the experimental level. The effects of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH), were tested against the quinolinic acid (QUIN)-induced early toxic effects in rat cortical slices, and compared with those effects exerted by the endocannabinoid anandamide (AEA). URB597 prevented the QUIN-induced loss of mitochondrial function/cell viability and lipid peroxidation, while reduced necrosis, and to a lesser extent, apoptosis. The protective effects of URB597 were mediated by activation of cannabinoid receptor 1 (CB1r), as evidenced by their inhibition by the selective CB1r antagonist AM281. Similar effects were observed when testing AEA against QUIN toxicity. Our findings demonstrate the neuroprotective properties of URB597 during the early stages of excitotoxic damage to cortical tissue, suggesting that these properties are mediated by FAAH inhibition, and might be linked to the protective effects of AEA, or the combination of endocannabinoids.


Assuntos
Amidoidrolases/antagonistas & inibidores , Benzamidas/administração & dosagem , Carbamatos/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Ácido Quinolínico/toxicidade , Receptor CB1 de Canabinoide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Masculino , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
3.
Int J Mol Sci ; 20(10)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117309

RESUMO

Fatty Acid Amide Hydrolase (FAAH) is one of the main enzymes responsible for endocannabinoid metabolism. Inhibition of FAAH increases endogenous levels of fatty acid ethanolamides such as anandamide (AEA) and thus consitutes an indirect strategy that can be used to modulate endocannabinoid tone. In the present work, we present a three-dimensional quantitative structure-activity relationships/comparative molecular similarity indices analysis (3D-QSAR/CoMSIA) study on a series of 90 reported irreversible inhibitors of FAAH sharing a piperazine-carboxamide scaffold. The model obtained was extensively validated (q2 = 0.734; r2 = 0.966; r2m = 0.723). Finally, based on the information derived from the contour maps we designed a series of 10 new compounds with high predicted FAAH inhibition (predicted pIC50 of the best-proposed compounds = 12.196; 12.416).


Assuntos
Amidoidrolases/antagonistas & inibidores , Canabinoides/farmacologia , Relação Quantitativa Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Humanos , Ligantes
4.
Mol Neurobiol ; 56(2): 844-856, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29802570

RESUMO

The endocannabinoid system (ECS) actively participates in several physiological processes within the central nervous system. Among such, its involvement in the downregulation of the N-methyl-D-aspartate receptor (NMDAr) through a modulatory input at the cannabinoid receptors (CBr) has been established. After its production via the kynurenine pathway (KP), quinolinic acid (QUIN) can act as an excitotoxin through the selective overactivation of NMDAr, thus participating in the onset and development of neurological disorders. In this work, we evaluated whether the pharmacological inhibition of fatty acid amide hydrolase (FAAH) by URB597, and the consequent increase in the endogenous levels of anandamide, can prevent the excitotoxic damage induced by QUIN. URB597 (0.3 mg/kg/day × 7 days, administered before, during and after the striatal lesion) exerted protective effects on the QUIN-induced motor (asymmetric behavior) and biochemical (lipid peroxidation and protein carbonylation) alterations in rats. URB597 also preserved the structural integrity of the striatum and prevented the neuronal loss (assessed as microtubule-associated protein-2 and glutamate decarboxylase localization) induced by QUIN (1 µL intrastriatal, 240 nmol/µL), while modified the early localization patterns of CBr1 (CB1) and NMDAr subunit 1 (NR1). Altogether, these findings support the concept that the pharmacological manipulation of the endocannabinoid system plays a neuroprotective role against excitotoxic insults in the central nervous system.


Assuntos
Amidoidrolases/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Ácido Quinolínico/farmacologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Animais , Ácidos Araquidônicos/farmacologia , Corpo Estriado/lesões , Endocanabinoides/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo
5.
Br J Nutr ; 118(10): 788-803, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29110748

RESUMO

Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Endocanabinoides/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/etiologia , Receptores de Canabinoides/metabolismo , Desmame , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Fenômenos Fisiológicos da Nutrição Animal , Animais , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Feminino , Lactação , Metabolismo dos Lipídeos , Masculino , Obesidade/metabolismo , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , Ratos Wistar , Receptores de Estrogênio/metabolismo , Fatores Sexuais , Termogênese
6.
Biomed Pharmacother ; 88: 745-753, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28157650

RESUMO

BACKGROUND: URB597 is a compound largely linked to the inhibition of fatty acid amide hydrolase (FAAH), an enzyme responsible for the metabolic degradation of the endocannabinoid anandamide (AEA). Despite this pharmacological property accounts for its modulatory profile demonstrated in some neurotoxic paradigms, the possible protective properties of this agent have been poorly investigated, and deserve exploration in different neurotoxic models. In this study, we explored the effects of URB597 on oxidative damage to lipids and other major endpoints of toxicity in two neurotoxic models in vivo in rats (the first one produced by the mitochondrial neurotoxin 3-nitropropionic acid [3-NP], and the other generated by the striatal injection of the pro-oxidant toxin 6-hydroxidopamine [6-OHDA]) in order to provide further supporting evidence of its modulatory profile. METHODS: Male Wistar adult rats were treated for 5 or 7 consecutive days with URB597 (0.3mg/kg, i.p.) and simultaneously exposed to three injections of 3-NP (30mg/kg, i.p.) or a single intrastriatal infusion of 6-OHDA (0.02mg/2µl), respectively. Twenty four hours after all treatments were administered, lipid peroxidation was measured in the striatum of 3-NP-treated rats, and in the midbrain of 6-OHDA-treated rats. Motor skills and histological assessment in the striatum were also evaluated in 3-NP-treated rats 6 and 7days after the last drug administration, respectively; whereas apomorphine-induced circling behavior and tyrosine hydroxylase immunolocalization in the striatum and substantia nigra were investigated 21 and 22days after the last drug infusion, respectively. RESULTS: URB597 prevented the oxidative damage to lipids induced by 3-NP in the striatum, and this effect could account for the attenuation of motor deficits in this model. Attenuation of motor disturbances induced by URB597 in both models was associated with the morphological preservation of the striatum in the 3-NP model and the partial preservation of tyrosine hydroxylase in the 6-OHDA model in the SNpc and striatum. CONCLUSION: The modulatory actions exerted by URB597 in both toxic models support its potential against toxic conditions implying motor and neurochemical alterations linked to energy depletion, excitotoxicity and oxidative stress. Although most of these effects could be attributable to its action on FAAH and further AEA accumulation, in light of our present findings other properties are suggested.


Assuntos
Benzamidas/uso terapêutico , Carbamatos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Amidoidrolases/antagonistas & inibidores , Animais , Apomorfina , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Injeções , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Destreza Motora/efeitos dos fármacos , Neostriado , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/psicologia , Nitrocompostos , Oxidopamina , Propionatos , Ratos , Ratos Wistar
7.
CNS Neurol Disord Drug Targets ; 16(4): 370-379, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28240187

RESUMO

BACKGROUND & OBJECTIVE: Cannabinoids are derivatives that are either compounds occurring naturally in the plant, Cannabis sativa or synthetic analogs of these molecules. The first and most widely investigated of the cannabinoids is Δ9-tetrahydrocannabinol (Δ9-THC), which is the main psychotropic constituent of cannabis and undergoes significant binding to cannabinoid receptors. These cannabinoid receptors are seven-transmembrane receptors that received their name from the fact that they respond to cannabinoid compounds, including Δ9-THC. The cannabinoid receptors have been described in rat, human and mouse brains and they have been named the CB1 and CB2 cannabinoid receptors. Later, an endogenous molecule that exerts pharmacological effects similar to those described by Δ9-THC and binds to the cannabinoid receptors was discovered. This molecule, named anandamide, was the first of five endogenous cannabinoid receptor agonists described to date in the mammalian brain and other tissues. Of these endogenous cannabinoids or endocannabinoids, the most thoroughly investigated to date have been anandamide and 2-arachidonoylglycerol (2-AG). Over the years, a significant number of articles have been published in the field of endogenous cannabinoids, suggesting a modulatory profile in multiple neurobiological roles of endocannabinoids. The general consensus accepts that the endogenous cannabinoid system includes natural ligands (such as anandamide and 2- AG), receptors (CB1 and CB2), and the main enzymes responsible for the hydrolysis of anandamide and 2-AG (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL], respectively) as well as the anandamide membrane transporter (AMT). To date, diverse pieces of evidence have shown that the endocannabinoid system controls multiple functions such as feeding, pain, learning and memory and has been linked with various disturbances, such as Parkinson´s disease. Among the modulatory properties of the endocannabinoid system, current data indicate that the sleep-wake cycle is under the influence of endocannabinoids since the blocking of the CB1 cannabinoid receptor or the pharmacological inhibition of FAAH activity promotes wakefulness, whereas the obstruction of AMT function enhances sleep. However, no solid evidence is available regarding the role of the endocannabinoid system in an unquestionable emotional component of the sleep: Dream activity. Since dreaming is a mental activity that occurs during sleep (characterized by emotions, sensory perceptions, and bizarre components) and the endocannabinoid system modulates neurobiological processes involving consciousness, such as learning and memory, attention, pain perception, emotions and sleep, it is acceptable to hypothesize that the endocannabinoid system might be modulating dream activity. In this regard, an accumulative body of evidence in human and animal models has been reported regarding the role of the endocannabinoid system in the control of emotional states and dreams. Moreover, preliminary studies in humans have indicated that treatment with cannabinoids may decrease post-traumatic stress disorder symptoms, including nightmares. CONCLUSION: Thus, based on a review of the literature available in PubMed, this article hypothesizes a conceptual framework within which the endocannabinoid system might influence the generation of dream experiences.


Assuntos
Estado de Consciência/fisiologia , Sonhos/fisiologia , Emoções/fisiologia , Endocanabinoides/metabolismo , Animais , Estado de Consciência/efeitos dos fármacos , Sonhos/efeitos dos fármacos , Emoções/efeitos dos fármacos , Humanos
8.
BBA Clin ; 5: 143-50, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27114924

RESUMO

BACKGROUND: Although in vivo studies have implicated endocannabinoids in metabolic dysfunction, little is known about direct, chronic activation of the endocannabinoid system (ECS) in human islets. Therefore, this study investigated the effects of prolonged exposure to cannabinoid agonists on human islet gene expression and function. METHODS: Human islets were maintained for 2 and 5 days in the absence or presence of CB1r (ACEA) or CB2r (JWH015) agonists. Gene expression was quantified by RT-PCR, hormone levels by radioimmunoassay and apoptosis by caspase activities. RESULTS: Human islets express an ECS, with mRNAs encoding the biosynthetic and degrading enzymes NAPE-PLD, FAAH and MAGL being considerably more abundant than DAGLα, an enzyme involved in 2-AG synthesis, or CB1 and CB2 receptor mRNAs. Prolonged activation of CB1r and CB2r altered expression of mRNAs encoding ECS components, but did not have major effects on islet hormone secretion. JWH015 enhanced insulin and glucagon content at 2 days, but had no effect after 5 days. Treatment with ACEA or JWH015 for up to 5 days did not have marked effects on islet viability, as assessed by morphology and caspase activities. CONCLUSIONS: Maintenance of human islets for up to 5 days in the presence of CB1 and CB2 receptor agonists causes modifications in ECS element gene expression, but does not have any major impact on islet function or viability. GENERAL SIGNIFICANCE: These data suggest that the metabolic dysfunction associated with over-activation of the ECS in obesity and diabetes in humans is unlikely to be secondary to impaired islet function.

9.
Phytochemistry ; 116: 138-148, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25817836

RESUMO

Maca, Lepidium meyenii Walpers (Brassicaceae), is an annual herbaceous plant native to the high plateaus of the Peruvian central Andes. Its underground storage hypocotyls have been a traditional medicinal agent and dietary staple since pre-Columbian times. Reported properties include energizing and fertility-enhancing effects. Published reports have focused on the benzylalkamides (macamides) present in dry hypocotyls as one of the main bioactive components. Macamides are secondary amides formed by benzylamine and a fatty acid moiety, with varying hydrocarbon chain lengths and degree of unsaturation. Although it has been assumed that they are usually present in fresh undamaged tissues, analyses show them to be essentially absent from them. However, hypocotyls dried by traditional Andean postharvest practices or industrial oven drying contain up to 800µgg(-1) dry wt (2.3µmolg(-1) dry wt) of macamides. In this study, the generation of macamides and their putative precursors were studied during nine-week traditional drying trials at 4200m altitude and in ovens under laboratory conditions. Freeze-thaw cycles in the open field during drying result in tissue maceration and release of free fatty acids from storage and membrane lipids up to levels of 1200µgg(-1) dry wt (4.3µmolg(-1) dry wt). Endogenous metabolism of the isothiocyanates generated from glucosinolate hydrolysis during drying results in maximal benzylamine values of 4300µgg(-1) dry wt (40.2µmolg(-1) dry wt). Pearson correlation coefficients of the accumulation profiles of benzylamine and free fatty acid to that of macamides showed good values of 0.898 and 0.934, respectively, suggesting that both provide sufficient substrate for amide synthesis during the drying process.


Assuntos
Lepidium/química , Alcamidas Poli-Insaturadas/isolamento & purificação , Humanos , Hipocótilo/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peru , Fitoterapia , Extratos Vegetais/uso terapêutico , Alcamidas Poli-Insaturadas/química
10.
J Psychopharmacol ; 29(3): 335-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25601395

RESUMO

Panic attacks, a major feature of panic disorder, can be modelled in rats by exposing animals to stimuli that induce escape reactions, such as the elevated T-maze or the activation of the dorsolateral periaqueductal grey. Since the cannabinoid CB1 receptor modulates various types of aversive responses, this study tested the hypothesis that enhancement of endocannabinoid signalling in the dorsolateral periaqueductal grey inhibits panic-like reactions in rats. Local injection of the CB1 agonist, arachidonoyl 2-Chloroethylamide (0.005-0.5 pmol), attenuated the escape response from the open arm of the elevated T-maze, a panicolytic effect. The anandamide hydrolysis inhibitor, URB597 (0.3-3 nmol), did not induce consistent results. In the test of dorsolateral periaqueductal grey stimulation with d,l-homocysteic acid, arachidonoyl 2-Chloroethylamide, at the lowest dose, attenuated the escape reaction. The highest dose of URB597 also inhibited this response, contrary to the result obtained in the elevated T-maze. This effect was reversed by the CB1 antagonist, AM251 (100 pmol). The present results confirm the anti-aversive property of direct CB1 receptor activation in the dorsolateral periaqueductal grey. The effect of the anandamide hydrolysis inhibitor, however, could be detected only in a model employing direct stimulation of this structure. Altogether, these results suggest that anandamide signalling is recruited only under certain types of aversive stimuli.


Assuntos
Benzamidas/farmacologia , Carbamatos/farmacologia , Endocanabinoides/metabolismo , Reação de Fuga/efeitos dos fármacos , Transtorno de Pânico/tratamento farmacológico , Animais , Ácidos Araquidônicos/administração & dosagem , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Benzamidas/administração & dosagem , Carbamatos/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtorno de Pânico/fisiopatologia , Substância Cinzenta Periaquedutal/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Pirazóis/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Exp Gerontol ; 60: 92-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25456842

RESUMO

Anandamide is an endocannabinoid involved in several physiological functions including neuroprotection. Anandamide is synthesized on demand and its endogenous level is regulated through its degradation, where fatty acid amide hydrolase plays a major role. The aim of this study was to characterize anandamide breakdown in physiological and pathological aging and its regulation by CB1 and CB2 receptor agonists. Fatty acid amide hydrolase activity was analyzed in an independent cohort of human cortical membrane samples from control and Alzheimer's disease patients, and in membrane and synaptosomes from adult and aged rat cerebral cortex. Our results demonstrate that fatty acid amide hydrolase activity decreases in the frontal cortex from human patients with Alzheimer's disease and this effect is mimicked by Aß(1-40) peptide. This activity increases and decreases in aged rat cerebrocortical membranes and synaptosomes, respectively. Also, while the presence of JWH-133, a CB2 selective agonist, slightly increases anandamide hydrolysis in human controls, it decreases this activity in adults and aged rat cerebrocortical membranes and synaptosomes. In the presence of WIN55,212-2, a mixed CB1/CB2 agonist, anandamide hydrolysis increases in Alzheimer's disease patients but decreases in human controls as well as in adult and aged rat cerebrocortical membranes and synaptosomes. Although a similar profile is observed in fatty acid amide hydrolase activity between aged rat synaptic endings and human Alzheimer's disease brains, it is differently modulated by CB1/CB2 agonists. This modulation leads to a reduced availability of anandamide in Alzheimer's disease and to an increased availability of this endocannabinoid in aging.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amidoidrolases/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Idoso , Idoso de 80 Anos ou mais , Amidoidrolases/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Benzamidas/farmacologia , Benzoxazinas/farmacologia , Canabinoides/farmacologia , Carbamatos/farmacologia , Estudos de Casos e Controles , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Morfolinas/farmacologia , Naftalenos/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Ratos , Ratos Wistar , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
12.
Hippocampus ; 24(1): 79-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24115292

RESUMO

It is well known that physical exercise has positive effects on cognitive functions and hippocampal plasticity. However, the underlying mechanisms have remained to be further investigated. Here we investigated the hypothesis that the memory-enhancement promoted by physical exercise relies on facilitation of the endocannabinoid system. We observed that the spatial memory tested in the object location paradigm did not persist in sedentary mice, but could be improved by 1 week of treadmill running. In addition, exercise up-regulated CB1 receptor and BDNF expression in the hippocampus. To verify if these changes required CB1 activation, we treated the mice with the selective antagonist, AM251, before each period of physical activity. In line with our hypothesis, this drug prevented the exercise-induced memory enhancement and BDNF expression. Furthermore, AM251 reduced CB1 expression. To test if facilitating the endocannabinoid system signaling would mimic the alterations observed after exercise, we treated sedentary animals during 1 week with the anandamide-hydrolysis inhibitor, URB597. Mice treated with this drug recognized the object in a new location and have increased levels of CB1 and BDNF expression in the hippocampus, showing that potentiating the endocanabinoid system equally benefits memory. In conclusion, the favorable effects of exercise upon spatial memory and BDNF expression depend on facilitation of CB1 receptor signaling, which can be mimic by inhibition of anandamide hydrolysis in sedentary animals. Our results suggest that, at least in part, the promnesic effect of the exercise is dependent of CB1 receptor activation and is mediated by BDNF.


Assuntos
Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Condicionamento Físico Animal/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides/metabolismo , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA