Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(11): 9595-9607, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38664300

RESUMO

Traumatic brain injury (TBI) is a prevalent and debilitating condition, which often leads to the development of post-traumatic epilepsy (PTE), a condition that yet lacks preventive strategies. Biperiden, an anticholinergic drug, is a promising candidate that has shown efficacy in murine models of PTE. MicroRNAs (miRNAs), small regulatory RNAs, can help in understanding the biological basis of PTE and act as TBI- and PTE-relevant biomarkers that can be detected peripherally, as they are present in extracellular vesicles (EVs) that cross the blood-brain barrier. This study aimed to investigate miRNAs in serum EVs from patients with TBI, and their association with biperiden treatment and PTE. Blood samples of 37 TBI patients were collected 10 days after trauma and treatment initiation in a double-blind clinical trial. A total of 18 patients received biperiden, with three subjects developing PTE, and 19 received placebo, with two developing PTE. Serum EVs were characterized by size distribution and protein profiling, followed by high-throughput sequencing of the EV miRNome. Differential expression analysis revealed no significant differences in miRNA expression between TBI patients with and without PTE. Interestingly, miR-9-5p displayed decreased expression in biperiden-treated patients compared to the placebo group. This miRNA regulates genes enriched in stress response pathways, including axonogenesis and neuronal death, relevant to both PTE and TBI. These findings indicate that biperiden may alter miR-9-5p expression in serum EVs, which may play a role in TBI resolution.


Assuntos
Lesões Encefálicas Traumáticas , Regulação para Baixo , Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/sangue , MicroRNAs/metabolismo , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/tratamento farmacológico , Vesículas Extracelulares/metabolismo , Masculino , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Adulto , Pessoa de Meia-Idade , Método Duplo-Cego , Epilepsia Pós-Traumática/sangue , Adulto Jovem
2.
Clin Transl Oncol ; 26(10): 2466-2478, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38625493

RESUMO

BACKGROUND: Cancer stem cells (CSCs) represent a potential mechanism contributing to tumorigenesis, metastasis, recurrence, and drug resistance. The objective of this study is to investigate the status quo and advancements in CSC research utilizing bibliometric analysis. METHODS: Publications related to CSCs from 2010 to 2022 were collected from the Web of Science Core Collection database. Various analytical tools including CiteSpace, VOSviewer, Scimago Graphica, and GraphPad Prism were used to visualize aspects such as co-authorship, co-occurrence, and co-citation within CSC research to provide an objective depiction of the contemporary status and developmental trajectory of the CSC field. RESULTS: A total of 22,116 publications were included from 1942 journals written by 95,992 authors. Notably, China emerged as the country with the highest number of publications, whereas the United States exerted the most significant influence within the field. MD Anderson Cancer Center emerged as the institution making the most comprehensive contributions. Wicha M.S. emerged as the most prolific and influential researcher. Among journals, Cancers emerged as a focal point for CSC research, consistently publishing a wealth of high-quality papers. Furthermore, it was observed that most journals tended to approach CSC research from molecular, biological, and immunological perspectives. The research into CSCs encompassed a broad array of topics, including isolation and enrichment techniques, biomarkers, biological characteristics, cancer therapy strategies, and underlying biological regulatory mechanisms. Notably, exploration of the tumor microenvironment and extracellular vesicles emerged as burgeoning research frontiers for CSCs. CONCLUSION: The research on CSCs has garnered growing interest. A trend toward multidisciplinary homogeneity is emerging within the realm of CSCs. Further investigation could potentially center on the patients of extracellular vesicles and the tumor microenvironment in relation to CSCs.


Assuntos
Bibliometria , Células-Tronco Neoplásicas , Células-Tronco Neoplásicas/patologia , Humanos , Pesquisa Biomédica , Neoplasias/patologia , Neoplasias/terapia
3.
J Am Vet Med Assoc ; 262(S1): S97-S108, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547591

RESUMO

OBJECTIVE: Mesenchymal stem cell (MSC) extracellular vesicles (EVs) have emerged as a biotherapeutic for osteoarthritis; however, manufacturing large quantities is not practical using traditional monolayer (2-D) culture. We aimed to examine the effects of 3-D and 2-D culture 2 types of media: Dulbecco modified Eagle medium and a commercially available medium (CM) on EV yield. ANIMALS: Banked bone marrow-derived MSCs (BM-MSCs) from 6 healthy, young horses were used. METHODS: 4 microcarriers (collagen-coated polystyrene, uncoated polystyrene, collagen-coated dextran, and uncoated dextran) were tested in static and bioreactor cultures, and the optimal microcarrier was chosen. The BM-MSCs were inoculated into a bioreactor with collagen-coated dextran microcarriers at 5,000 cells/cm2 or onto culture dishes at 4,000 cells/cm2 in either Dulbecco modified Eagle medium or CM media. Supernatants were obtained for metabolite and pH analysis. The BM-MSCs were expanded until confluent (2-D) or for 7 days (3-D) when the 48-hour EV collection period commenced using EV-depleted media. Extracellular vesicles were isolated and characterized via nanoparticle tracking analysis, Western blot, transmission electron microscopy, and protein quantification. The BM-MSCs were harvested, quantified, and immunophenotyped. RESULTS: The number of EVs isolated was not improved by 3-D culture or CM media, however, the CM 3-D condition improved the number of EVs produced per BM-MSC over the CM 2-D condition (mean ± SD: 306 ± 99 vs 37 ± 22, respectively). Glucose decreased and lactate and ammonium accumulated in 3-D culture. Surface markers of stemness exhibited reduced expression in 3-D culture. CLINICAL RELEVANCE: Optimization of our 3-D culture methods could improve BM-MSC expansion and thus EV yield.


Assuntos
Técnicas de Cultura de Células , Meios de Cultura , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Cavalos , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Técnicas de Cultura de Células/veterinária
4.
Immunol Invest ; 53(1): 70-89, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981469

RESUMO

INTRODUCTION: Research in tumor treatment has shown promising results using extracellular vesicles (EVs) derived from immune cells. EVs derived from M1 macrophages (proinflammatory), known as M1-EVs, have properties that suppress tumor growth, making them a promising treatment tool for immune susceptible tumors such as melanoma. Here, small unaltered M1-EVs (M1-sEVs) were employed in a 3D mouse melanoma model (melanospheres) to evaluate such activity. METHODS: Macrophages were polarized and EVs were isolated by ultracentrifugation. The EVs obtained were characterized based on size, with measurements performed by dynamic light scattering and electron microscopy, and the expression profiles of microRNAs were analyzed by microarray and PCR. Melanospheres were used to evaluate the cytotoxicity of M1-sEVs. Pondering a possible future transposition from the animal model to the human, human melanoma cells were transfected with a specific miRNA, and the impact on cell proliferation was evaluated. RESULTS: The isolated EVs showed a size distribution between 50-400 nm in diameter, but preeminently in a range of 70-90 nm. M1-sEVs demonstrated a remarkable ability to reduce cell proliferation and viability in the melanospheres, leading to a decrease in their volume. M1-sEVs contained unique miRNAs, including miR-29a-3p, which exhibited significant antitumor activities according to bioinformatics analysis. Validation of the antitumor effects of miR-29a-3p was obtained by a functional evaluation, i.e., by inducing miRNA overexpression in human melanoma cells (SK-MEL-28). CONCLUSION: Although further research would be advisable, the study provides evidence supporting the potential of M1-sEVs and their miRNA load as a possible targeted immune therapy for melanoma.


Assuntos
Vesículas Extracelulares , Melanoma , MicroRNAs , Animais , Humanos , Camundongos , Melanoma/terapia , Modelos Animais de Doenças , Macrófagos , MicroRNAs/genética
5.
Life (Basel) ; 13(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137887

RESUMO

Helminth parasites cause debilitating-sometimes fatal-diseases in humans and animals. Despite their impact on global health, mechanisms underlying host-parasite interactions are still poorly understood. One such mechanism involves the exchange of extracellular vesicles (EVs), which are membrane-enclosed subcellular nanoparticles. To date, EV secretion has been studied in helminth parasites, including EV protein content. However, information is highly heterogeneous, since it was generated in multiple species, using varied protocols for EV isolation and data analysis. Here, we compared the protein cargo of helminth EVs to identify common markers for each taxon. For this, we integrated published proteomic data and performed a comparative analysis through an orthology approach. Overall, only three proteins were common in the EVs of the seven analyzed species. Additionally, varied repertoires of proteins with moonlighting activity, vaccine antigens, canonical and non-canonical proteins related to EV biogenesis, taxon-specific proteins of unknown function and RNA-binding proteins were observed in platyhelminth and nematode EVs. Despite the lack of consensus on EV isolation protocols and protein annotation, several proteins were shown to be consistently detected in EV preparations from organisms at different taxa levels, providing a starting point for a selective biochemical characterization.

6.
Toxins (Basel) ; 15(11)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37999488

RESUMO

L-Amino acid oxidase (LAAO) is an enzyme found in snake venom that has multifaceted effects, including the generation of hydrogen peroxide (H2O2) during oxidative reactions, leading to various biological and pharmacological outcomes such as apoptosis, cytotoxicity, modulation of platelet aggregation, hemorrhage, and neutrophil activation. Human neutrophils respond to LAAO by enhancing chemotaxis, and phagocytosis, and releasing reactive oxygen species (ROS) and pro-inflammatory mediators. Exosomes cellular nanovesicles play vital roles in intercellular communication, including immune responses. This study investigates the impact of Calloselasma rhodostoma snake venom-derived LAAO (Cr-LAAO) on human neutrophil exosome release, including activation patterns, exosome formation, and content. Neutrophils isolated from healthy donors were stimulated with Cr-LAAO (100 µg/mL) for 3 h, followed by exosome isolation and analysis. Results show that Cr-LAAO induces the release of exosomes with distinct protein content compared to the negative control. Proteomic analysis reveals proteins related to the regulation of immune responses and blood coagulation. This study uncovers Cr-LAAO's ability to activate human neutrophils, leading to exosome release and facilitating intercellular communication, offering insights into potential therapeutic approaches for inflammatory and immunological disorders.


Assuntos
Exossomos , L-Aminoácido Oxidase , Humanos , L-Aminoácido Oxidase/farmacologia , L-Aminoácido Oxidase/metabolismo , Neutrófilos , Exossomos/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteômica , Venenos de Serpentes
7.
Proteomes ; 11(3)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37606419

RESUMO

In recent decades, the role played by extracellular vesicles in physiological and pathological processes has attracted attention. Extracellular vesicles are released by different types of cells and carry molecules that could become biomarkers for the diagnosis of diseases. Extracellular vesicles are also moldable tools for the controlled release of bioactive substances in clinical and therapeutic applications. However, one of the significant challenges when studying these exciting and versatile vesicles is the purification process, which presents significant difficulties in terms of lack of purity, yield, and reproducibility, reflected in unreliable data. Therefore, our objective in the present study was to compare the proteomic profile of serum-derived EVs purified using ExoQuick™ (Systems Biosciences), Total Isolation Kit (Life Technologies), Ultracentrifugation, and Ultrafiltration. Each technique utilized for purification has shown different concentrations and populations of purified particles. The results showed marked differences in distribution, size, and protein content, demonstrating the need to develop reproducible and reliable protocols to isolate extracellular vesicles for their clinical application.

8.
Int Immunopharmacol ; 122: 110531, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437434

RESUMO

Autoimmune diseases are complex, chronic inflammatory conditions initiated by the loss of immunological tolerance to self-antigens. Nowadays, there is no effective and useful therapy for autoimmune diseases, and the existing medications have some limitations due to their nonspecific targets and side effects. During the last few decades, it has been established that mesenchymal stem cells (MSCs) have immunomodulatory functions. It is proposed that MSCs can exert an important therapeutic effect on autoimmune disorders. In parallel with these findings, several investigations have shown that MSCs alleviate autoimmune diseases. Intriguingly, the results of studies have demonstrated that the effective roles of MSCs in autoimmune diseases do not depend on direct intercellular communication but on their ability to release a wide spectrum of paracrine mediators such as growth factors, cytokines and extracellular vehicles (EVs). EVs that range from 50 to 5,000 nm were produced by almost any cell type, and these nanoparticles participate in homeostasis and intercellular communication via the transfer of a broad range of biomolecules such as modulatory proteins, nucleic acids (DNA and RNA), lipids, cytokines, and metabolites. EVs derived from MSCs display the exact properties of MSCs and can be safer and more beneficial than their parent cells. In this review, we will discuss the features of MSCs and their EVs, EVs biogenesis, and their cargos, and then we will highlight the existing discoveries on the impacts of EVs from MSCs on autoimmune diseases such as multiple sclerosis, arthritis rheumatic, inflammatory bowel disease, Type 1 diabetes mellitus, systemic lupus erythematosus, autoimmune liver diseases, Sjögren syndrome, and osteoarthritis, suggesting a potential alternative for autoimmune conditions therapy.


Assuntos
Doenças Autoimunes , Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Vesículas Extracelulares/metabolismo , Doenças Autoimunes/terapia , Doenças Autoimunes/metabolismo , Osteoartrite/metabolismo , Células-Tronco Mesenquimais/metabolismo , Citocinas/metabolismo
9.
Biomedicines ; 11(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37239158

RESUMO

Exosomes are extracellular nanovesicles commonly produced by mammalian cells that in recent years have risen as a novel strategy for drug delivery systems and cancer therapy because of their innate specificity and high bioavailability. However, there are limitations that undermine their potential. Among them is the lack of mass production capacity with the current available sources and the failure to reach the intended therapeutic effect because of their insufficient uptake or their rapid clearance once administered. This review aims to show the current advances in overcoming these limitations by presenting, firstly, reported strategies to improve exosome and exosome-like nanovesicle extraction from possible novel eukaryotic sources, including animals, plants, and protozoa; and secondly, alternative modification methods that functionalize exosomes by conferring them higher targeting capacity and protection from organism defenses, which results in an increase in the attachment of ligands and cellular uptake of inorganic materials. However, even when these strategies might address some of the obstacles in their procurement and therapeutic use, there are still several aspects that need to be addressed, so several perspectives of the matter are also presented and analyzed throughout this work.

10.
Mol Ther Nucleic Acids ; 31: 541-552, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36895953

RESUMO

Apis mellifera royal jelly (RJ) is a well-known remedy in traditional medicine around the world and its versatile effects range from antibacterial to anti-inflammatory properties and pro-regenerative properties. As a glandular product, RJ has been shown to contain a substantial number of extracellular vesicles (EVs), and, in this study, we aimed to investigate the extent of involvement of RJEVs in wound healing-associated effects. Molecular analysis of RJEVs verified the presence of exosomal markers such as CD63 and syntenin, and cargo molecules MRJP1, defensin-1, and jellein-3. Furthermore, RJEVs were demonstrated to modulate mesenchymal stem cell (MSC) differentiation and secretome, as well as decrease LPS-induced inflammation in macrophages by blocking the mitogen-activated protein kinase (MAPK) pathway. In vivo studies confirmed antibacterial effects of RJEVs and demonstrated an acceleration of wound healing in a splinted mouse model. This study suggests that RJEVs play a crucial role in the known effects of RJ by modulating the inflammatory phase and cellular response in wound healing. Transfer of RJ into the clinics has been impeded by the high complexity of the raw material. Isolating EVs from the raw RJ decreases the complexity while allowing standardization and quality control, bringing a natural nano-therapy one step closer to the clinics.

11.
Nutr Neurosci ; 26(8): 680-695, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36039918

RESUMO

OBJECTIVES: Cerebral ischemia is the most common cause of disability, the second most common cause of dementia, and the fourth most common cause of death in the developed world [Sveinsson OA, Kjartansson O, Valdimarsson EM. Heilablóðþurrð/heiladrep: Faraldsfræði, orsakir og einkenni [Cerebral ischemia/infarction - epidemiology, causes and symptoms]. Laeknabladid. 2014 May;100(5):271-9. Icelandic. doi:10.17992/lbl.2014.05.543]. Obesity has been associated with worse outcomes after ischemia in rats, triggering proinflammatory cytokine production related to the brain microvasculature. The way obesity triggers these effects remains mostly unknown. Therefore, the aim of this study was to elucidate the cellular mechanisms of damage triggered by obesity in the context of cerebral ischemia. METHODS: We used a rat model of obesity induced by a 20% high fructose diet (HFD) and evaluated peripheral alterations in plasma (lipid and cytokine profiles). Then, we performed cerebral ischemia surgery using two-vessel occlusion (2VO) and analyzed neurological/motor performance and glial activation. Next, we treated endothelial cell line cultures with glutamate in vitro to simulate an excitotoxic environment, and we added 20% plasma from obese rats. Subsequently, we isolated EVs released from endothelial cells and treated primary cultures of astrocytes with them. RESULTS: Rats fed a HFD had an increased BMI with dyslipidemia and high levels of proinflammatory cytokines. Glia from the obese rats exhibited altered morphology, suggesting hyperreactivity related to neurological and motor deficits. Plasma from obese rats induced activation of endothelial cells, increasing proinflammatory signals and releasing more EVs. Similarly, these EVs caused an increase in NF-κB and astrocyte cytotoxicity. Together, the results suggest that obesity activates proinflammatory signals in endothelial cells, resulting in the release of EVs that simultaneously contribute to astrocyte activation.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Vesículas Extracelulares , Ratos , Animais , Células Endoteliais/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Obesidade/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Endotélio/metabolismo , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo
12.
Biol Res ; 55(1): 35, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435789

RESUMO

Extracellular vesicles (EVs) are naturally released membrane vesicles that act as carriers of proteins and RNAs for intercellular communication. With various biomolecules and specific ligands, EV has represented a novel form of information transfer, which possesses extremely outstanding efficiency and specificity compared to the classical signal transduction. In addition, EV has extended the concept of signal transduction to intercellular aspect by working as the collection of extracellular information. Therefore, the functions of EVs have been extensively characterized and EVs exhibit an exciting prospect for clinical applications. However, the biogenesis of EVs and, in particular, the regulation of this process by extracellular signals, which are essential to conduct further studies and support optimal utility, remain unclear. Here, we review the current understanding of the biogenesis of EVs, focus on the regulation of this process by extracellular signals and discuss their therapeutic value.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Comunicação Celular/fisiologia , Transdução de Sinais , Transporte Biológico , RNA/metabolismo
13.
Zygote ; 30(4): 440-463, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35652626

RESUMO

Over the last decades, extracellular vesicles (EVs) have been found to be implicated in a complex universal mechanism of communication between different cell types. EVs are nanostructures of lipid nature that have an exosomal or ectosomal biogenesis, responsible for the intercellular transport of proteins, lipids, carbohydrates, nucleic acids, ions, among other molecules. The content of EVs can vary due to various factors such as hormonal stimuli, non-physiological conditions, metabolic state, etc. Once EVs reach their target cell, they can modulate processes such as gene expression, metabolism, response to external factors, and can even be associated with the delivery of molecules involved in epigenetic inheritance processes in germ cells. In mammalian reproduction, EVs have been shown to play an important role, either in vivo or in vitro, modulating a variety of processes in sperm, oocytes and embryos, and in their respective environments. Moreover, EVs represent a biodegradable, harmless and specific vehicle, which makes them attractive allies to consider when improving assisted reproductive technologies (ARTs). Therefore, the present review aims to describe the content of the main EVs involved in mammalian reproduction and how they can vary due to different factors, as well as to detail how EVs modulate, directly or indirectly, different molecular processes in gametes and embryos. In addition, we will highlight the mechanisms that remain to be elucidated. We will also propose new perspectives according to the characteristics of each particular EV to improve the different ARTs.


Assuntos
Vesículas Extracelulares , Sêmen , Animais , Vesículas Extracelulares/metabolismo , Masculino , Mamíferos , Oócitos/fisiologia , Reprodução , Espermatozoides
14.
Braz J Microbiol ; 53(2): 1081-1084, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35286665

RESUMO

Respiratory diseases constitute a major health challenge for the worldwide pork industry. Porcine enzootic pneumonia (PES) is caused by Mycoplasma hyopneumoniae (Mhyo). Mycoplasmas have the ability to produce extracellular vesicles (EVs), which can be useful for pathogenicity studies and as delivery systems for vaccines. The aim of this study was to demonstrate and compare, under laboratory conditions, EVs produced by Mhyo strain J and wild isolate in stressed and non-stressed in vitro conditions. Using differential centrifugation, density gradient ultracentrifugation, and transmission electron microscopy, the ability of Mhyo strains to produce EVs was demonstrated under favorable and unfavorable conditions.


Assuntos
Vesículas Extracelulares , Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Doenças dos Suínos , Animais , Pneumonia Suína Micoplasmática/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Virulência
15.
Biol. Res ; 55: 35-35, 2022. ilus
Artigo em Inglês | LILACS | ID: biblio-1429901

RESUMO

Extracellular vesicles (EVs) are naturally released membrane vesicles that act as carriers of proteins and RNAs for intercellular communication. With various biomolecules and specific ligands, EV has represented a novel form of information transfer, which possesses extremely outstanding efficiency and specificity compared to the classical signal transduction. In addition, EV has extended the concept of signal transduction to intercellular aspect by working as the collection of extracellular information. Therefore, the functions of EVs have been extensively characterized and EVs exhibit an exciting prospect for clinical applications. However, the biogenesis of EVs and, in particular, the regulation of this process by extracellular signals, which are essential to conduct further studies and support optimal utility, remain unclear. Here, we review the current understanding of the biogenesis of EVs, focus on the regulation of this process by extracellular signals and discuss their therapeutic value.


Assuntos
Vesículas Extracelulares/metabolismo , Transporte Biológico , RNA/metabolismo , Transdução de Sinais , Comunicação Celular/fisiologia
16.
Front Bioeng Biotechnol ; 9: 619930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124014

RESUMO

Cell therapy is witnessing a notable shift toward cell-free treatments based on paracrine factors, in particular, towards small extracellular vesicles (sEV), that mimic the functional effect of the parental cells. While numerous sEV-based applications are currently in advanced preclinical stages, their promised translation depends on overcoming the manufacturing hurdles posed by the large-scale production of purified sEV. Unquestionably, the culture medium used with the parental cells plays a key role in the sEV's secretion rate and content. An essential requisite is the use of a serum-, xeno-, and blood-free medium to meet the regulatory entity requirements of clinical-grade sEV's production. Here, we evaluated OxiumTMEXO, a regulatory complying medium, with respect to production capacity and conservation of the EV's characteristics and functionality and the parental cell's phenotype and viability. A comparative study was established with standard DMEM and a commercially available culture medium developed specifically for sEV production. Under similar conditions, OxiumTMEXO displayed a three-fold increase of sEV secretion, with an enrichment of particles ranging between 51 and 200 nm. These results were obtained through direct quantification from the conditioned medium to avoid the isolation method's interference and variability and were compared to the two culture media under evaluation. The higher yield obtained was consistent with several harvest time points (2, 4, and 6 days) and different cell sources, incluiding umbilical cord-, menstrual blood-derived mesenchymal stromal cells and fibroblasts. Additionally, the stem cell phenotype and viability of the parental cell remained unchanged. Furthermore, OxiumTMEXO-sEV showed a similar expression pattern of the vesicular markers CD63, CD9, and CD81, with respect to sEV derived from the other conditions. The in vitro internalization assays in different target cell types and the pharmacokinetic profile of intraperitoneally administered sEV in vivo indicated that the higher EV production rate did not affect the uptake kinetics or the systemic biodistribution in healthy mice. In conclusion, the OxiumTMEXO medium sustains an efficient and robust production of large quantities of sEV, conserving the classic functional properties of internalization into acceptor target cells and biodistribution in vivo, supplying the amount and quality of EVs for the development of cell-free therapies.

17.
Nanomaterials (Basel) ; 11(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072581

RESUMO

Extracellular vesicles (EVs) are nanoparticles released by cells that contain a multitude of biomolecules, which act synergistically to signal multiple cell types. EVs are ideal candidates for promoting tissue growth and regeneration. The tissue regenerative potential of EVs raises the tantalizing possibility that immobilizing EVs on implant surfaces could potentially generate highly bioactive and cell-instructive surfaces that would enhance implant integration into the body. Such surfaces could address a critical limitation of current implants, which do not promote bone tissue formation or bond bone. Here, we developed bioactive titanium surface coatings (SurfEV) using two types of EVs: secreted by decidual mesenchymal stem cells (DEVs) and isolated from fermented papaya fluid (PEVs). For each EV type, we determined the size, morphology, and molecular composition. High concentrations of DEVs enhanced cell proliferation, wound closure, and migration distance of osteoblasts. In contrast, the cell proliferation and wound closure decreased with increasing concentration of PEVs. DEVs enhanced Ca/P deposition on the titanium surface, which suggests improvement in bone bonding ability of the implant (i.e., osteointegration). EVs also increased production of Ca and P by osteoblasts and promoted the deposition of mineral phase, which suggests EVs play key roles in cell mineralization. We also found that DEVs stimulated the secretion of secondary EVs observed by the presence of protruding structures on the cell membrane. We concluded that, by functionalizing implant surfaces with specialized EVs, we will be able to enhance implant osteointegration by improving hydroxyapatite formation directly at the surface and potentially circumvent aseptic loosening of implants.

18.
Comput Struct Biotechnol J ; 19: 2286-2296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995920

RESUMO

Extracellular vesicles (EVs) are double-membrane particles associated with intercellular communication. Since the discovery of EV production in the fungus Cryptococcus neoformans, the importance of EV release in its physiology and pathogenicity has been investigated. To date, few studies have investigated the proteomic content of EVs from multiple fungal species. Our main objective was to use an orthology approach to compare proteins identified by EV shotgun proteomics in 8 pathogenic and 1 nonpathogenic species. Using protein information from the UniProt and FungiDB databases, we integrated data for 11,433 hits in fungal EVs with an orthology perspective, resulting in 3,834 different orthologous groups. OG6_100083 (Hsp70 Pfam domain) was the unique orthologous group that was identified for all fungal species. Proteins with this protein domain are associated with the stress response, survival and morphological changes in different fungal species. Although no pathogenic orthologous group was found, we identified 5 orthologous groups exclusive to S. cerevisiae. Using the criteria of at least 7 pathogenic fungi to define a cluster, we detected the 4 unique pathogenic orthologous groups. Taken together, our data suggest that Hsp70-related proteins might play a key role in fungal EVs, regardless of the pathogenic status. Using an orthology approach, we identified at least 4 protein domains that could be novel therapeutic targets against pathogenic fungi. Our results were compiled in the herein described ExVe database, which is publicly available at http://exve.icc.fiocruz.br.

19.
Nanomedicine ; 35: 102385, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33774130

RESUMO

Inflammation is a central mechanism in cardiovascular diseases (CVD), where sustained oxidative stress and immune responses contribute to cardiac remodeling and impairment. Exosomes are extracellular vesicles released by cells to communicate with their surroundings and to modulate the tissue microenvironment. Recent evidence indicates their potential as cell-free immunomodulatory therapeutics for CVD, preventing cell death and fibrosis while inducing wound healing and angiogenesis. Biomimetic exosomes are semi-synthetic particles engineered using essential moieties present in natural exosomes (lipids, RNA, proteins) to reproduce their therapeutic effects while improving on scalability and standardization due to the ample range of moieties available to produce them. In this review, we provide an up-to-date description of the use of exosomes for CVD and offer our vision on the areas of opportunity for the development of biomimetic strategies. We also discuss the current limitations to overcome in the process towards their translation into clinic.


Assuntos
Materiais Biomiméticos , Doenças Cardiovasculares , Comunicação Celular/efeitos dos fármacos , Exossomos/química , Agentes de Imunomodulação , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Fibrose , Humanos , Agentes de Imunomodulação/química
20.
Curr Top Med Chem ; 21(3): 193-204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32972342

RESUMO

Schistosomiasis is a neglected tropical disease. It is related to long-lasting granulomatous fibrosis and inflammation of target organs, and current sub-optimal pharmacological treatment creates global public health concerns. Intravascular worms and eggs release antigens and extracellular vesicles that target host endothelial cells, modulate the immune system, and stimulate the release of damageassociated molecular patterns (DAMPs). ATP, one of the most studied DAMPs, triggers a cascade of autocrine and paracrine actions through purinergic P2X and P2Y receptors, which are shaped by ectonucleotidases (CD39). Both P2 receptor families, and in particular P2Y1, P2Y2, P2Y12, and P2X7 receptors, have been attracting increasing interest in several inflammatory diseases and drug development. Current data obtained from the murine model unveiled a CD39-ADP-P2Y1/P2Y12 receptors signaling pathway linked to the liver and mesenteric exacerbations of schistosomal inflammation. Therefore, we proposed that members of this purinergic signaling could be putative pharmacological targets to reduce schistosomal morbidity.


Assuntos
Anti-Helmínticos/farmacologia , Receptores Purinérgicos/imunologia , Esquistossomose/tratamento farmacológico , Animais , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Schistosoma/efeitos dos fármacos , Schistosoma/imunologia , Esquistossomose/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA