Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genome ; 64(9): 833-845, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33852822

RESUMO

Alstroemeria (Alstroemeriaceae) displays a conserved and highly asymmetric karyotype, where most rDNA sites can be properly recognized by the size and morphology of the chromosomes. We analyzed the intraspecific variation of rDNA sites in A. longistaminea and compared with their distribution in other species (A. caryophyllaea and A. piauhyensis) and a representative of a sister genus, Bomarea edulis. All three species of Alstroemeria presented 2n = 16, and one to six B chromosomes were found in some individuals of A. longistaminea. There was a set of 12 conserved rDNA sites (four 5S and eight 35S) and up to 11 variable sites. B chromosomes were almost entirely covered by 35S signals, coupled with tiny 5S sites. Noteworthy, most rDNA sites found in A. caryophyllaea and A. piauhyensis were localized in chromosome positions similar to those in A. longistaminea, suggesting the existence of conserved hotspots for rDNA accumulation. Some of these hotspots were absent in Chilean Alstromeria as well in B. edulis. We propose that insertions of rDNA sequences on chromosomes do not occur randomly but rather on preferential sites or hotspots for insertions. The maintenance of these arrays, however, may be favored/constrained by different factors, resulting in stable or polymorphic sites.


Assuntos
Alstroemeria , DNA Ribossômico , Variação Genética , Liliales , Alstroemeria/genética , DNA de Plantas/genética , DNA Ribossômico/genética , Cariótipo , Liliales/genética
2.
Genome ; 62(7): 467-475, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31071271

RESUMO

Interspecific hybridization and genome duplication to form allopolyploids are major evolutionary events in angiosperms. In the parasitic genus Cuscuta (Convolvulaceae), molecular data suggested the existence of species of hybrid origin. One of them, C. veatchii, has been proposed as a hybrid between C. denticulata and C. nevadensis, both included in sect. Denticulatae. To test this hypothesis, a cytogenetic analysis was performed with CMA/DAPI staining and fluorescent in situ hybridization using 5S and 35S rDNA and genomic probes. Chromosomes of C. denticulata were small with a well-defined centromeric region, whereas C. nevadensis had larger, densely stained chromosomes, and less CMA+ heterochromatic bands. Cuscuta veatchii had 2n = 60 chromosomes, about 30 of them similar to those of C. denticulata and the remaining to C. nevadensis. GISH analysis confirmed the presence of both subgenomes in the allotetraploid C. veatchii. However, the number of rDNA sites and the haploid karyotype length in C. veatchii were not additive. The diploid parentals had already diverged in their chromosomes structure, whereas the reduction in the number of rDNA sites more probably occurred after hybridization. As phylogenetic data suggested a recent divergence of the progenitors, these species should have a high rate of karyotype evolution.


Assuntos
Evolução Biológica , Cuscuta/genética , Genoma de Planta , Ploidias , Arizona , DNA de Plantas/genética , Hibridização in Situ Fluorescente , Cariotipagem , México
3.
Genet Mol Biol ; 33(4): 714-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21637581

RESUMO

The karyotype structure of Arachis trinitensis was studied by conventional Feulgen staining, CMA/DAPI banding and rDNA loci detection by fluorescence in situ hybridization (FISH) in order to establish its genome status and test the hypothesis that this species is a genome donor of cultivated peanut. Conventional staining revealed that the karyotype lacked the small "A chromosomes" characteristic of the A genome. In agreement with this, chromosomal banding showed that none of the chromosomes had the large centromeric bands expected for A chromosomes. FISH revealed one pair each of 5S and 45S rDNA loci, located in different medium-sized metacentric chromosomes. Collectively, these results suggest that A. trinitensis should be removed from the A genome and be considered as a B or non-A genome species. The pattern of heterochromatic bands and rDNA loci of A. trinitensis differ markedly from any of the complements of A. hypogaea, suggesting that the former species is unlikely to be one of the wild diploid progenitors of the latter.

4.
Genet Mol Biol ; 33(4): 731-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21637583

RESUMO

Most species of the genus Tripogandra (Commelinaceae) are taxonomically poorly circumscribed, in spite of having a relatively stable basic number x = 8. Aiming to estimate the cytological variation among Tripogandra species carrying this base number, several structural karyotypic characters were investigated in the diploid T. glandulosa, the hexaploid T. serrulata, and the octoploid T. diuretica. A careful evaluation of chromosome size and morphology did not reveal clear chromosome homeologies among karyotypes. The mean chromosome size was strongly reduced in the octoploid species, but not in the hexaploid species. They also differed largely in the CMA(+) banding pattern and in the number of 5S and 45S rDNA sites per monoploid chromosome complement. All three species showed proximal DAPI (+) heterochromatin, although in T. serrulata this kind of heterochromatin was only visible after FISH. Further, the meiosis in T. serrulata was highly irregular, suggesting that this species has a hybrid origin. The data indicate that, in spite of the conservation of the base number, these species are karyologically quite different from each other.

5.
Genet. mol. biol ; Genet. mol. biol;33(4): 714-718, 2010. ilus
Artigo em Inglês | LILACS | ID: lil-571522

RESUMO

The karyotype structure of Arachis trinitensis was studied by conventional Feulgen staining, CMA/DAPI banding and rDNA loci detection by fluorescence in situ hybridization (FISH) in order to establish its genome status and test the hypothesis that this species is a genome donor of cultivated peanut. Conventional staining revealed that the karyotype lacked the small "A chromosomes" characteristic of the A genome. In agreement with this, chromosomal banding showed that none of the chromosomes had the large centromeric bands expected for A chromosomes. FISH revealed one pair each of 5S and 45S rDNA loci, located in different medium-sized metacentric chromosomes. Collectively, these results suggest that A. trinitensis should be removed from the A genome and be considered as a B or non-A genome species. The pattern of heterochromatic bands and rDNA loci of A. trinitensis differ markedly from any of the complements of A. hypogaea, suggesting that the former species is unlikely to be one of the wild diploid progenitors of the latter.

6.
Genet. mol. biol ; Genet. mol. biol;31(3): 717-724, 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-490061

RESUMO

Chromosome markers were developed for Arachis glandulifera using fluorescence in situ hybridization (FISH) of the 5S and 45S rRNA genes and heterochromatic 4'-6-diamidino-2-phenylindole (DAPI) positive bands. We used chromosome landmarks identified by these markers to construct the first Arachis species ideogram in which all the homologous chromosomes were precisely identified. The comparison of this ideogram with those published for other Arachis species revealed very poor homeologies with all A and B genome taxa, supporting the special genome constitution (D genome) of A. glandulifera. Genomic affinities were further investigated by dot blot hybridization of biotinylated A. glandulifera total DNA to DNA from several Arachis species, the results indicating that the D genome is positioned between the A and B genomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA