Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Biochimie ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936684

RESUMO

In hominids, including Homo sapiens, uric acid is the end product of purine catabolism. In contrast, other placental mammals further degrade uric acid to (S)-allantoin by enzymes such as urate oxidase (uricase), HIU hydrolase (HIUase), and OHCU decarboxylase. Some organisms, such as frogs and fish, hydrolyze (S)-allantoin to allantoate and eventually to (S)-ureidoglycolate and urea, while marine invertebrates convert urea to ammonium. In H. sapiens, mutations in the uricase gene led to a reduction in the selective pressure for maintaining the integrity of the genes encoding the other enzymes of the purine catabolism pathway, resulting in an accumulation of uric acid. The hyperuricemia resulting from this accumulation is associated with gout, cardiovascular disease, diabetes, and preeclampsia. Many commonly used drugs, such as aspirin, can also increase uric acid levels. Despite the apparent absence of these enzymes in H. sapiens, there appears to be production of transcripts for uricase (UOX), HIUase (URAHP), OHCU decarboxylase (URAD), and allantoicase (ALLC). While some URAHP transcripts are classified as long non-coding RNAs (lncRNAs), URAD and ALLC produce protein-coding transcripts. Given the presence of these transcripts in various tissues, we hypothesized that they may play a role in the regulation of purine catabolism and the pathogenesis of diseases associated with hyperuricemia. Here, we specifically investigate the unique aspects of purine catabolism in H. sapiens, the effects mutations of the uricase gene, and the potential regulatory role of the corresponding transcripts. These findings open new avenues for research and therapeutic approaches for the treatment of hyperuricemia and related diseases.

2.
World J Microbiol Biotechnol ; 40(2): 61, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177966

RESUMO

Strains belonging to R. opacus, R. jostii, R. fascians, R. erythropolis and R. equi exhibited differential ability to grow and produce lipids from fruit residues (grape marc and apple pomace), as well as single carbohydrates, such as glucose, gluconate, fructose and sucrose. The oleaginous species, R. opacus (strains PD630 and MR22) and R. jostii RHA1, produced higher yields of biomass (5.1-5.6 g L-1) and lipids (38-44% of CDW) from apple juice wastes, in comparison to R. erythropolis DSM43060, R. fascians F7 and R. equi ATCC6939 (4.1-4.3 g L-1 and less than 10% CDW of lipids). The production of cellular biomass and lipids were also higher in R. opacus and R. jostii (6.8-7.2 g L-1 and 33.9-36.5% of CDW of lipids) compared to R. erythropolis, R. fascians, and R. equi (3.0-3.6 g L-1 and less than 10% CDW of lipids), during cultivation of cells on wine grape waste. A genome-wide bioinformatic analysis of rhodococci indicated that oleaginous species possess a complete set of genes/proteins necessary for the efficient utilization of carbohydrates, whereas genomes from non-oleaginous rhodococcal strains lack relevant genes coding for transporters and/or enzymes for the uptake, catabolism and assimilation of carbohydrates, such as gntP, glcP, edd, eda, among others. Results of this study highlight the potential use of the oleaginous rhodococcal species to convert sugar-rich agro-industrial wastes, such as apple pomace and grape marc, into single-cell oils.


Assuntos
Frutas , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Glucose/metabolismo , Genômica , Lipídeos , Óleos/metabolismo
3.
Appl Environ Microbiol ; 89(12): e0063023, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054732

RESUMO

IMPORTANCE: Fusaric acid (FA) is an important virulence factor produced by several Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin reduces the survival and competition abilities of bacterial species able to antagonize Fusarium spp., due to its negative effects on viability and the production of antibiotics effective against these fungi. FA biodegradation is not a common characteristic among bacteria, and the determinants of FA catabolism have not been identified so far in any microorganism. In this study, we identified genes, enzymes, and metabolic pathways involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our results provide insights into the catabolism of a pyridine-derivative involved in plant pathogenesis by a rhizosphere bacterium.


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Fusarium , Micotoxinas , Animais , Humanos , Micotoxinas/metabolismo , Ácido Fusárico/metabolismo , Burkholderia/metabolismo , Complexo Burkholderia cepacia/metabolismo , Fungos/metabolismo , Solo , Fusarium/metabolismo , Doenças das Plantas/microbiologia
4.
Nutrients ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571315

RESUMO

Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes. In addition, molecules derived from amino acid catabolism play a role in metabolism as they are used in the epigenetic regulation of many genes. Thus, this review aims to examine the mechanisms of amino acid catabolism and to support the idea that this process is associated with the immune response, abnormalities during obesity, in particular insulin resistance, and the regulation of thermogenesis.


Assuntos
Resistência à Insulina , MicroRNAs , Humanos , Epigênese Genética , Aminoácidos/metabolismo , Obesidade
5.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36986469

RESUMO

Kynureninase (KYNU) is a kynurenine pathway (KP) enzyme that produces metabolites with immunomodulatory properties. In recent years, overactivation of KP has been associated with poor prognosis of several types of cancer, in particular by promoting the invasion, metastasis, and chemoresistance of cancer cells. However, the role of KYNU in gliomas remains to be explored. In this study, we used the available data from TCGA, CGGA and GTEx projects to analyze KYNU expression in gliomas and healthy tissue, as well as the potential contribution of KYNU in the tumor immune infiltrate. In addition, immune-related genes were screened with KYNU expression. KYNU expression correlated with the increased malignancy of astrocytic tumors. Survival analysis in primary astrocytomas showed that KYNU expression correlated with poor prognosis. Additionally, KYNU expression correlated positively with several genes related to an immunosuppressive microenvironment and with the characteristic immune tumor infiltrate. These findings indicate that KYNU could be a potential therapeutic target for modulating the tumor microenvironment and enhancing an effective antitumor immune response.

6.
Front Plant Sci ; 14: 1079778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818891

RESUMO

Introduction: Rice is a primary global food source, and its production is affected by abiotic stress, caused by climate change and other factors. Recently, the pyrimidine reductive catabolic pathway, catalyzed by dihydropyrimidine dehydrogenase (DHPD), dihydropyrimidinase (DHP) and ß-ureidopropionase (ß-UP), has emerged as a potential participant in the abiotic stress response of rice. Methods: The rice enzymes were produced as recombinant proteins, and two were kinetically characterized. Rice dihydroorotate dehydrogenase (DHODH), an enzyme of pyrimidine biosynthesis often confused with DHPD, was also characterized. Salt-sensitive and salt-resistant rice seedlings were subjected to salt stress (24 h) and metabolites in leaves were determined by mass spectrometry. Results: The OsDHPD sequence was homologous to the C-terminal half of mammalian DHPD, conserving FMN and uracil binding sites, but lacked sites for Fe/S clusters, FAD, and NADPH. OsDHPD, truncated to eliminate the chloroplast targeting peptide, was soluble, but inactive. Database searches for polypeptides homologous to the N-terminal half of mammalian DHPD, that could act as co-reductants, were unsuccessful. OsDHODH exhibited kinetic parameters similar to those of other plant DHODHs. OsDHP, truncated to remove a signal sequence, exhibited a kcat/Km = 3.6 x 103 s-1M-1. Osb-UP exhibited a kcat/Km = 1.8 x 104 s-1M-1. Short-term salt exposure caused insignificant differences in the levels of the ureide intermediates dihydrouracil and ureidopropionate in leaves of salt-sensitive and salt-resistant plants. Allantoin, a ureide metabolite of purine catabolism, was found to be significantly higher in the resistant cultivar compared to one of the sensitive cultivars. Discussion: OsDHP, the first plant enzyme to be characterized, showed low kinetic efficiency, but its activity may have been affected by truncation. Osb-UP exhibited kinetic parameters in the range of enzymes of secondary metabolism. Levels of two pathway metabolites were similar in sensitive and resistant cultivars and appeared to be unaffected by short-term salt exposure."

7.
Mol Biol Rep ; 50(1): 719-730, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372816

RESUMO

BACKGROUND: Streptomyces strains degrade many complex organic compounds and produce secondary metabolites. In aerobic organisms such as Streptomyces species, the tricarboxylic acid (TCA) cycle represents an indispensable central carbon metabolic pathway for energy generation and metabolic intermediary replenishment. Although various precursors for antibiotic biosynthesis are derived from this cycle, relatively few studies have focused on determining how a single carbon source can impact this metabolic pathway at different growth phases. In this study, we identified chromosomal genes involved in the TCA cycle in Streptomyces coelicolor and determined their mRNA levels. METHODS AND RESULTS: We searched the genes involved in the TCA cycle in S. coelicolor through bioinformatic analysis. Growth, glucose concentration quantification and RNA isolation were made from cultures of S. coelicolor grown on minimal medium with glucose along 72 h. mRNA levels of all identified genes were obtained by RT-qPCR. Five enzymes encoded by a single gene each were found, while for the rest at least two genes were found. The results showed that all the genes corresponding to the TCA enzymes were transcribed at very different levels and some of them displayed growth-phase dependent expression. CONCLUSION: All TCA cycle-associated genes, including paralog genes, were differentially transcribed in S. coelicolor grown in minimal medium with glucose as carbon source. Some of them, such as succinyl-CoA synthetase and succinate dehydrogenase, have low mRNA levels, which could limit the carbon flux through the TCA cycle. Our findings suggest that the genetic expansion of TCA cycle genes could confer to S. coelicolor the ability to adapt to diverse nutritional conditions and metabolic changes through different paralog genes expression.


Assuntos
Streptomyces coelicolor , Streptomyces , Ciclo do Ácido Cítrico/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Glucose/metabolismo , Redes e Vias Metabólicas/genética , Streptomyces/metabolismo , Carbono/metabolismo
8.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12604, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1505883

RESUMO

Chondrocyte inflammation and catabolism are two major features in the progression of osteoarthritis (OA). Chelidonine, a principal alkaloid extracted from Chelidonium majus, is suggested to show anti-inflammation, anti-apoptosis, and anti-oxidation activities in various diseases. However, its potential effects on OA cartilage degeneration remains unclear. To evaluate the effect of chelidonine on OA and its underlying mechanism, we incubated chondrocytes with interleukin (IL)-1β and chelidonine at varying concentrations. Then, we performed the CCK-8 assay, fluorescence immunostaining, reverse transcription PCR, ELISA, and western blotting to evaluate cell viability, catabolic/inflammatory factors, levels of extracellular matrix (ECM)-related proteins, and the involved pathways. H&E and Safranin-O staining and ELISA were performed to measure cartilage degradation and synovial inflammation. Chelidonine suppressed the IL-1β-mediated catabolism and inflammation of chondrocytes. Chelidonine suppressed the NF-κB pathway activation. Similarly, our in vivo experiment showed that chelidonine partially attenuated cartilage degradation while inhibiting synovial inflammation. Chelidonine inhibited inflammation and catabolism through modulation of NF-κB pathways in vitro, thereby avoiding rat cartilage degeneration and synovial inflammation within OA.

9.
Metabolites ; 12(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36355137

RESUMO

Indoleamine dioxygenase (IDO), a rate limiting enzyme of the tryptophan catabolism through the kynurenine pathway (KP), has been related with a lower survival and a poor patient prognosis on several solid tumors, including gliomas. However, the use of IDO inhibitors as a therapeutic strategy for tumor treatment remains controversial in clinical trials and the role of other KP enzymes on tumor progression has remained poorly understood so far. Recently, different studies on different types of cancer have pointed out the importance of KP enzymes downstream IDO. Because of this, we conducted a bioinformatic analysis of the expression of different KP enzymes and their correlation with the gene expression of molecules related to the hallmarks of cancer in transcriptomic datasets from patients with different types of brain tumors including low grade gliomas, glioblastoma multiforme, neuroblastoma, and paraganglioma and pheochromocytoma. We found that KP enzymes that drive to NAD+ synthesis are overexpressed on different brain tumors compared to brain cortex data. Moreover, these enzymes presented positive correlations with the expression of genes related to immune response modulation, angiogenesis, Signal Transducer and Activator of Transcription (STAT) signaling, and Rho GTPase expression. These correlations suggest the relevance of the expression of the KP enzymes in brain tumor pathogenesis.

10.
Antioxidants (Basel) ; 11(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35883715

RESUMO

Endurance and resistance exercises, alone or in combination, induce metabolic changes that affect tryptophan (Trp) catabolism. The kynurenine pathway (KP) is the main route of Trp degradation, and it is modulated by the inflammatory and redox environments. Previous studies have shown that KP metabolites work as myokines that mediate the positive systemic effects related to exercise. However, it is poorly understood how different exercise modalities and intensities impact the KP. The aim of this study was to characterize the effect of two different exercise modalities, military diving and swimming, on the KP and the redox environment. A total of 34 healthy men from the Mexican Navy were included in the study, 20 divers and 14 swimmers, who started and stayed in military training consistently during the six months of the study; 12 Mexican men without fitness training were used as the control group. Physical fitness was determined at the beginning and after 6 months of training; criteria included body composition; serum levels of Trp, kynurenine (KYN), kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK); the glutathione ratio (GSH/GSSG); and malondialdehyde (MDA).. Results showed a significant loss of body fat in both the diver and swimmer groups. Compared with the control group, divers showed a decrease in Trp and 3-HK levels, but no changes were observed in the KYN/Trp, KYNA/Trp or 3-HK/Trp ratios, while swimmers showed a decrease in KYN levels and an increase in the KYNA and 3-HK levels. Additionally, divers showed a decrease in the GSH/GSSG ratio and an increase in MDA levels, in contrast to the swimmers, who showed a decrease in MDA levels and an increase in GSH/GSSG levels. Our findings suggest a differential shift in the KP and redox environment induced by diving and swimming. Swimming promotes an antioxidant environment and a peripheral overactivation of the KP.

11.
Microorganisms ; 10(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35208938

RESUMO

Heavy metal co-contamination in crude oil-polluted environments may inhibit microbial bioremediation of hydrocarbons. The model heavy metal-resistant bacterium Cupriavidus metallidurans CH34 possesses cadmium and mercury resistance, as well as genes related to the catabolism of hazardous BTEX aromatic hydrocarbons. The aims of this study were to analyze the aromatic catabolic potential of C. metallidurans CH34 and to determine the functionality of the predicted benzene catabolic pathway and the influence of cadmium and mercury on benzene degradation. Three chromosome-encoded bacterial multicomponent monooxygenases (BMMs) are involved in benzene catabolic pathways. Growth assessment, intermediates identification, and gene expression analysis indicate the functionality of the benzene catabolic pathway. Strain CH34 degraded benzene via phenol and 2-hydroxymuconic semialdehyde. Transcriptional analyses revealed a transition from the expression of catechol 2,3-dioxygenase (tomB) in the early exponential phase to catechol 1,2-dioxygenase (catA1 and catA2) in the late exponential phase. The minimum inhibitory concentration to Hg (II) and Cd (II) was significantly lower in the presence of benzene, demonstrating the effect of co-contamination on bacterial growth. Notably, this study showed that C. metallidurans CH34 degraded benzene in the presence of Hg (II) or Cd (II).

12.
Pest Manag Sci ; 78(2): 692-702, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34647418

RESUMO

BACKGROUND: Blood-sucking insects incorporate many times their body weight of blood in a single meal. Because proteins are the major component of vertebrate blood, its digestion in the gut generates extremely high concentrations of free amino acids. Previous reports showed that the tyrosine degradation pathway plays an essential role in adapting these animals to blood feeding. Inhibition of 4-hydroxyphenylpyruvate dioxygenase (HPPD), the rate-limiting step of tyrosine degradation, results in the death of insects after a blood meal. Therefore, it has been suggested that compounds that block the catabolism of tyrosine could act selectively on blood-feeding insects. Here, we evaluated the toxicity against mosquitoes of three HPPD inhibitors currently used as herbicides and in human health. RESULTS: Of the compounds tested, nitisinone (NTBC) proved to be more potent than mesotrione (MES) and isoxaflutole (IFT) in Aedes aegypti. NTBC was lethal to Ae. aegypti in artificial feeding assays [median lethal dose (LD50 ): 4.53 µm] and in topical application (LD50 : 0.012 nmol/mosquito). NTBC was also lethal to Ae. aegypti populations that were resistant to neurotoxic insecticides, and to other mosquito species (Anopheles and Culex). CONCLUSION: HPPD inhibitors, particularly NTBC, represent promising new drugs for mosquito control. Because they affect only blood-feeding organisms, they represent a safer and more environmentally friendly alternative to conventional neurotoxic insecticides. © 2021 Society of Chemical Industry.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Aedes , Culex , Inseticidas , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Animais , Humanos , Controle de Mosquitos , Mosquitos Vetores
13.
Front Cell Dev Biol ; 9: 672545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557481

RESUMO

In multicellular organisms, tissue generation, maintenance, and homeostasis depend on stem cells. Cellular metabolic status is an essential component of different differentiated states, from stem to fully differentiated cells. Threonine (Thr) metabolism has emerged as a critical factor required to maintain pluripotent/multipotent stem cells in both plants and animals. Thus, both kingdoms conserved or converged upon this fundamental feature of stem cell function. Here, we examine similarities and differences in Thr metabolism-dependent mechanisms supporting stem cell maintenance in these two kingdoms. We then consider common features of Thr metabolism in stem cell maintenance and predict and speculate that some knowledge about Thr metabolism and its role in stem cell function in one kingdom may apply to the other. Finally, we outline future research directions to explore these hypotheses.

14.
Cells ; 10(8)2021 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-34440798

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The enzyme indoleamine-2,3-dioxygenase (IDO), which participates in the rate-limiting step of tryptophan catabolism through the kynurenine pathway (KP), is associated with poor prognosis in patients with GBM. The metabolites produced after tryptophan oxidation have immunomodulatory properties that can support the immunosuppressor environment. In this study, mRNA expression, protein expression, and activity of the enzyme kynurenine monooxygenase (KMO) were analyzed in GBM cell lines (A172, LN-18, U87, U373) and patient-derived astrocytoma samples. KMO mRNA expression was assessed by real-time RT-qPCR, KMO protein expression was evaluated by flow cytometry and immunofluorescence, and KMO activity was determined by quantifying 3-hydroxykynurenine by HPLC. Heterogenous patterns of both KMO expression and activity were observed among the GBM cell lines, with the A172 cell line showing the highest KMO expression and activity. Higher KMO mRNA expression was observed in glioma samples than in patients diagnosed with only a neurological disease; high KMO mRNA expression was also observed when using samples from patients with GBM in the TCGA program. The KMO protein expression was localized in GFAP+ cells in tumor tissue. These results suggest that KMO is a relevant target to be explored in glioma since it might play a role in supporting tumor metabolism and immune suppression.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Quinurenina 3-Mono-Oxigenase/genética , Adulto , Astrocitoma/enzimologia , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Feminino , Glioma/enzimologia , Glioma/genética , Humanos , Estimativa de Kaplan-Meier , Cinurenina/análogos & derivados , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
15.
FEMS Microbiol Rev ; 45(6)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34160574

RESUMO

The metalloenzyme arginase hydrolyzes l-arginine to produce l-ornithine and urea. In bacteria, arginase has important functions in basic nitrogen metabolism and redistribution, production of the key metabolic precursor l-ornithine, stress resistance and pathogenesis. We describe the regulation and specific functions of the arginase pathway as well as summarize key characteristics of related arginine catabolic pathways. The use of arginase-derived ornithine as a precursor molecule is reviewed. We discuss the biochemical and transcriptional regulation of arginine metabolism, including arginase, with the latter topic focusing on the RocR and AhrC transcriptional regulators in the model organism Bacillus subtilis. Finally, we consider similarities and contrasts in the structure and catalytic mechanism of the arginases from Bacillus caldovelox and Helicobacter pylori. The overall aim of this review is to provide a panorama of the diversity of physiological functions, regulation and biochemical features of arginases in a variety of bacterial species.


Assuntos
Arginase , Helicobacter pylori , Arginase/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Helicobacter pylori/genética , Ornitina
16.
Braz J Microbiol ; 52(3): 1151-1159, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33956332

RESUMO

Infection by SARS-CoV-2, the causative agent of COVID-19, is critically connected with host metabolism. Through functional enrichment analysis, the present study aims to evaluate the biological processes involving host proteins interfered by SARS-CoV-2 to verify the potential metabolic impact of the infection. Furthermore, tissue enrichment analyses and differential gene expression of host proteins were applied to understand the interference by SARS-CoV-2 on tissue levels. Results based on functional and tissue-specific enrichment analyses, presented in this study, suggest that SARS-CoV-2, mediated interference on host proteins, can affect the metabolism and catabolism of molecular building blocks and control intracellular mechanisms, including gene expression in metabolism-related organs, to support viral demands. Thus, SARS-CoV-2 can broadly affect the host metabolism and catabolism at tissue and physiological levels contributing to a more severe disease.


Assuntos
COVID-19/metabolismo , COVID-19/imunologia , Metabolismo Energético , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Mapas de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo , SARS-CoV-2/metabolismo
17.
Metabolism ; 116: 154705, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422545

RESUMO

The preservation of body proteins is essential to guarantee their functions in organisms. Therefore, the utilization of amino acids as energy substrates is regulated by a precise fine-tuned mechanism. Recent evidence suggests that the transcription factors peroxisome proliferator-activated receptor alpha (PPARα) and hepatocyte nuclear factor 4 alpha (HNF4α) are involved in this regulatory mechanism. Thus, the aim of this study was to determine how these transcription factors interact to regulate the expression of amino acid catabolism genes. In vivo studies using PPARα-knockout mice (Pparα-null) fed different amounts of dietary protein showed that in the absence of PPARα, there was a significant increase in HNF4α abundance in the liver, which corresponded with an increase in amino acid catabolizing enzyme (AACE) expression and the generation of increased amounts of postprandial urea. Moreover, this effect was proportional to the increase in dietary protein consumed. Chromatin immunoprecipitation assays showed that HNF4α can bind to the promoter of AACE serine dehydratase (SDS), an effect that was potentiated by dietary protein in the Pparα-null mice. The mechanistic studies revealed that the presence of retinoid X receptor alpha (RXRα) is essential to repress HNF4α activity in the presence of PPARα, and this interaction accelerates HNF4α degradation via the proteasome pathway. These results showed that PPARα can downregulate liver amino acid catabolism in the presence of RXRα by inhibiting HNF4α activity.


Assuntos
Aminoácidos/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , PPAR alfa/fisiologia , Receptor X Retinoide alfa/fisiologia , Animais , Regulação para Baixo/genética , Células HEK293 , Células Hep G2 , Humanos , Masculino , Metabolismo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Receptor X Retinoide alfa/genética
18.
Life Sci ; 267: 118944, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359749

RESUMO

AIMS: Liver cirrhosis is the main chronic liver disease and is considered a catabolic disease. Cirrhotic patients have a low energy intake and high energy expenditure at rest, leading to metabolic disorders. Malnutrition is associated with complications of cirrhosis and has been shown that a nutritional intervention with increase of energy intake improves the survival of cirrhotic patients. Therefore, our aim was to evaluate the effect of a high sucrose diet in the liver of animals with cirrhosis induced by thioacetamide and investigate the mechanism involved. MAIN METHODS: Male Wistar rats were divided into three groups: Control; Thioacetamide; and Thioacetamide + high sucrose diet. The thioacetamide was administrated (100 mg kg-1) intraperitoneally and the sucrose was offered in drinking water (300 g L-1). KEY FINDINGS: The administration of thioacetamide was associated with fibrosis and inflammatory infiltrate in the liver and increased levels of transaminases enzymes. The high sucrose diet promoted a reduction of theses parameters in cirrhotic rats. The malnutrition observed in cirrhotic rats was attenuated by the high sucrose diet shown by the improvements in weight loss, subcutaneous fat, and caloric intake. The high sucrose diet also attenuated the oxidative stress present in the liver of animals with thioacetamide-induced cirrhosis. SIGNIFICANCE: The high sucrose diet had anti-inflammatory and anti-oxidant effects in the liver of animals with thioacetamide-induced cirrhosis. In addition, the high sucrose diet also improved malnutrition and catabolism present in cirrhosis. Thus, a high sucrose diet may be a therapeutic option for cirrhotic patients in a catabolic state.


Assuntos
Sacarose Alimentar/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dieta , Sacarose Alimentar/metabolismo , Inflamação , Fígado/metabolismo , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Sacarose/metabolismo , Sacarose/farmacologia , Tioacetamida/efeitos adversos , Tioacetamida/farmacologia
19.
Nutrients ; 13(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374283

RESUMO

Prevention of hyperlipidemia and associated diseases is a health priority. Natural products, such as the medicinal mushroom Ganoderma lucidum (Gl), have demonstrated hypocholesterolemic, prebiotic and antidiabetic properties. However, the underlying transcriptomic mechanisms by which Gl exerts bioactivities are not completely understood. We report a comprehensive hepatic and renal transcriptome profiling of C57BL/6 mice under the consumption of a high-cholesterol diet and two standardized Gl extracts obtained from basidiocarps cultivated on conventional substrate (Gl-1) or substrate containing acetylsalicylic acid (ASA; Gl-2). We showed that Gl extracts modulate relevant metabolic pathways involving the restriction of lipid biosynthesis and the enrichment of lipid degradation and secretion. The Gl-2 extract exerts a major modulation over gene expression programs showing the highest similarity with simvastatin druggable-target-genes and these are enriched more in processes related to human obesity alterations in the liver. We further show a subset of Gl-modulated genes correlated with Lactobacillus enrichment and the reduction of circulating cholesterol-derived fats. Moreover, Gl extracts induce a significant decrease of macrophage lipid storage, which occurs concomitantly with the down-modulation of Fasn and Elovl6. Collectively, this evidence suggests a new link between Gl hypocholesterolemic and prebiotic activity, revealing thereby that standardized Mexican Gl extracts are a novel transcriptome modulator to prevent metabolic disorders associated with hypercholesterolemia.


Assuntos
Colesterol na Dieta/administração & dosagem , Microbioma Gastrointestinal/fisiologia , Lipogênese/genética , Reishi/química , Transcriptoma/fisiologia , Animais , Anticolesterolemiantes/administração & dosagem , Rim/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Prebióticos/administração & dosagem , Células RAW 264.7 , Transcriptoma/efeitos dos fármacos
20.
Data Brief ; 31: 105960, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32676531

RESUMO

The article shows dataset of the proteolysis of a natural variant of apolipoprotein A-I (apoA-I) with a substitution of a leucine by and arginine in position 60 (L60R), in comparison with the protein with the native sequence (Wt). This information demonstrates the potential of in vitro partial proteolysis experiments as it may be applicable to different approaches in the biophysical field. We have analyzed by different electrophoresis techniques apoA-I variants, quantified the degree of proteolysis after staining and compared the proteolysis efficiency with the computed cleavage patterns. The data shown here clearly strengthen the usefulness of this approach to test protein flexibility, as it may be attained with enzymes which are not expected to modify in vivo this protein but have a well-known digestion pattern. In addition it is appropriate for evaluating protein catabolism, as it is exemplified here by the evidence with metalloproteinase 12 (MMP-12), which is a physiological protease that may elicit the pro-inflammatory processing of this variant within the lesions. We support the work "Structural analysis of a natural apolipoprotein A-I variant (L60R) associated with amyloidosis" (Gaddi, et al., 2020), gaining insights on protein folding from a characterization by proteolysis analysis [1].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA