Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
Sci Rep ; 14(1): 18139, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103398

RESUMO

In Southeast Asia (SEA) fastidious fungi of the Ceratobasidium genus are associated with proliferation of sprouts and vascular necrosis in cacao and cassava, crops that were introduced from the tropical Americas to this region. Here, we report the isolation and in vitro culture of a Ceratobasidium sp. isolated from cassava with symptoms of witches' broom disease (CWBD), a devastating disease of this crop in SEA. The genome characterization using a hybrid assembly strategy identifies the fungus as an isolate of the species C. theobromae, the causal agent of vascular streak dieback of cacao in SEA. Both fungi have a genome size > 31 Mb (G+C content 49%), share > 98% nucleotide identity of the Internal Transcribed Spacer (ITS) and > 94% in genes used for species-level identification. Using RNAscope® we traced the pathogen and confirmed its irregular distribution in the xylem and epidermis along the cassava stem, which explains the obtention of healthy planting material from symptom-free parts of a diseased plant. These results are essential for understanding the epidemiology of CWBD, as a basis for disease management including measures to prevent further spread and minimize the risk of introducing C. theobromae via long-distance movement of cassava materials to Africa and the Americas.


Assuntos
Genoma Fúngico , Manihot , Doenças das Plantas , Manihot/microbiologia , Doenças das Plantas/microbiologia , Sudeste Asiático , Filogenia , Basidiomycota/genética , Basidiomycota/isolamento & purificação
2.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126018

RESUMO

Cassava starch solid biopolymer electrolyte (SBPE) films were prepared by a thermochemical method with different concentrations of lithium triflate (LiTFT) as a dopant salt. The process began with dispersing cassava starch in water, followed by heating to facilitate gelatinization; subsequently, plasticizers and LiTFT were added at differing concentrations. The infrared spectroscopy analysis (FTIR-ATR) showed variations in the wavenumber of some characteristic bands of starch, thus evidencing the interaction between the LiTFT salt and biopolymeric matrix. The short-range crystallinity index, determined by the ratio of COH to COC bands, exhibited the highest crystallinity in the salt-free SBPEs and the lowest in the SBPEs with a concentration ratio (Xm) of 0.17. The thermogravimetric analysis demonstrated that the salt addition increased the dehydration process temperature by 5 °C. Additionally, the thermal decomposition processes were shown at lower temperatures after the addition of the LiTFT salt into the SBPEs. The differential scanning calorimetry showed that the addition of the salt affected the endothermic process related to the degradation of the packing of the starch molecules, which occurred at 70 °C in the salt-free SBPEs and at lower temperatures (2 or 3 °C less) in the films that contained the LiTFT salt at different concentrations. The cyclic voltammetry analysis of the SBPE films identified the redox processes of the glucose units in all the samples, with observed differences in peak potentials (Ep) and peak currents (Ip) across various salt concentrations. Electrochemical impedance spectroscopy was used to establish the equivalent circuit model Rf-(Cdl/(Rct-(CPE/Rre))) and determine the electrochemical parameters, revealing a higher conduction value of 2.72 × 10-3 S cm-1 for the SBPEs with Xm = 17 and a lower conduction of 5.80 × 10-4 S cm-1 in the salt-free SBPEs. It was concluded that the concentration of LiTFT salt in the cassava starch SBPE films influences their morphology and slightly reduces their thermal stability. Furthermore, the electrochemical behavior is affected in terms of variations in the redox potentials of the glucose units of the biopolymer and in their ionic conductivity.


Assuntos
Condutividade Elétrica , Eletrólitos , Manihot , Amido , Amido/química , Manihot/química , Eletrólitos/química , Termogravimetria , Biopolímeros/química , Mesilatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Varredura Diferencial de Calorimetria
3.
Gels ; 10(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057454

RESUMO

Phosphorous (P) is one the most important elements in several biological cycles, and is a fundamental component of soil, plants and living organisms. P has a low mobility and is quickly adsorbed on clayey soils, limiting its availability and absorption by plants. Here, biodegradable hydrogels based on Cassava starch crosslinked with citric acid (CA) were made and loaded with KH2PO4 and phosphorite to promote the slow release of phosphorus, the storing of water, and the reduction in P requirements during fertilization operations. Crosslinking as a function of CA concentrations was investigated by ATR-FTIR and TGA. The water absorption capacity (WAC) and P release, under different humic acid concentration regimens, were studied by in vitro tests. It is concluded that hydrogel formed from 10% w/w of CA showed the lowest WAC because of a high crosslinking degree. Hydrogel containing 10% w/w of phosphorite was shown to be useful to encouraging the slow release of P, its release behavior being fitted to the Higuchi kinetics model. In addition, P release increased as humic acid contents were increased. These findings suggest that these hydrogels could be used for encouraging P slow release during crop production.

4.
Gels ; 10(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39057457

RESUMO

Fertilizers with enhanced efficiency or high-efficiency fertilizers increase the nutrient availability, minimize losses, and reduce costs, thereby increasing crop yields and food production while mitigating environmental impacts. This research evaluates the synthesis of biodegradable hydrogels from cassava starch and citric acid for agrochemical applications. Hydrogels were synthesized using water as the solvent and applied for the controlled release of macronutrients (N and K). Four concentrations of nutrient-containing salts were tested (0.5 to 10.0% w/w). Materials were analyzed using ATR-FTIR spectroscopy and swelling studies. The presence of nutrients reduced both the crosslinking efficacy and the water absorption capacity, with the latter dropping from 183.4 ± 0.6% to 117.9 ± 3.7% and 157.4 ± 25.0% for hydrogels loaded with NH4Cl and KCl, respectively. The cumulative release of K and N from the hydrogel was monitored for 144 h and examined using kinetics models, revealing that the releases follow Fickian's diffusion and anomalous diffusion, respectively. Additionally, the material was formed using cassava with peel previously milled to reduce the production costs, and its potential for nutrient-controlled delivery was evaluated, with the finding that this hydrogel decreases the release rate of nitrogen. The results suggest that these biomaterials may have promising applications in the agrochemical industry in the making of high-efficiency fertilizers.

5.
Bioprocess Biosyst Eng ; 47(10): 1633-1645, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38970656

RESUMO

This work aimed to define strategies to increase the bioproduction of 6 pentyl-α-pyrone (bioaroma). As first strategy, fermentations were carried out in the solid state, with agro-industrial residues: Mauritia flexuosa Liliopsida. and Manihot esculenta Crantz in isolation, conducting them with different nutrient solutions having Trichoderma harzianum as a fermenting fungus. Physicochemical characterizations, centesimal composition, lignocellulosic and mineral content and antimicrobial activity were required. Fermentations were conducted under different humidification conditions (water, nutrient solution without additives and nutrient solutions with glucose or sucrose) for 9 days. Bioaroma was quantified by gas chromatography, assisted by solid-phase microextraction. The results showed the low production of this compound in fermentations conducted with sweet cassava (around 6 ppm (w/w)). The low bioproduction with sweet cassava residues can probably be related to its starch-rich composition, homogeneous substrate, and low concentration of nutrients. Already using buriti, the absence of aroma production was detected. Probably the presence of silicon and high lignin content in buriti minimized the fungal activity, making it difficult to obtain the aroma of interest. Given the characteristics presented by the waste, a new strategy was chosen: mixing waste in a 1:1 ratio. This fermentation resulted in the production of 156.24 ppm (w/w) of aroma using the nutrient solution added with glucose. This combination, therefore, promoted more favorable environment for the process, possibly due to the presence of fermentable sugars from sweet cassava and fatty acids from the buriti peel, thus proving the possibility of an increase of around 2500% in the bioproduction of coconut aroma.


Assuntos
Manihot , Pironas , Manihot/química , Manihot/metabolismo , Pironas/metabolismo , Pironas/química , Cocos/química , Odorantes/análise , Hypocreales/metabolismo , Fermentação
6.
Bioprocess Biosyst Eng ; 47(7): 1057-1070, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38842769

RESUMO

The treatment of agroindustrial wastewater using microbial fuel cells (MFCs) is a technological strategy to harness its chemical energy while simultaneously purifying the water. This manuscript investigates the organic load effect as chemical oxygen demand (COD) on the production of electricity during the treatment of cassava wastewater by means of a dual-chamber microbial fuel cell in batch mode. Additionally, specific conditions were selected to evaluate the semi-continuous operational mode. The dynamics of microbial communities on the graphite anode were also investigated. The maximum power density delivered by the batch MFC (656.4 µW m - 2 ) was achieved at the highest evaluated organic load (6.8 g COD L - 1 ). Similarly, the largest COD removal efficiency (61.9%) was reached at the lowest organic load (1.17 g COD L - 1 ). Cyanide degradation percentages (50-70%) were achieved across treatments. The semi-continuous operation of the MFC for 2 months revealed that the voltage across the cell is dependent on the supply or suspension of the organic load feed. The electrode polarization resistance was observed to decreases over time, possibly due to the enrichment of the anode with electrogenic microbial communities. A metataxonomic analysis revealed a significant increase in bacteria from the phylum Firmicutes, primarily of the genus Enterococcus.


Assuntos
Fontes de Energia Bioelétrica , Manihot , Águas Residuárias , Fontes de Energia Bioelétrica/microbiologia , Manihot/química , Águas Residuárias/microbiologia , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Eletrodos , Purificação da Água/métodos
7.
Int J Biol Macromol ; 275(Pt 1): 133386, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914407

RESUMO

Biodegradable starch foam trays offer an eco-friendly substitute for petroleum-based single-use packaging, notably polystyrene foams. However, they lack flexibility, tensile strength, and water-sensitivity, addressable through lignocellulosic reinforcement. This study aimed to develop biodegradable starch foam trays filled with different food-chain side streams for sustainable alternative packaging. Corncob, soybean straw, cassava peel, araucaria seed hull, yerba mate stalks and yerba mate leaves petiole were collected, dried and ground to <250 µm. The trays were filled with 13 % (w/w) of each food-chain side streams and produced by hot molding. The trays morphology, moisture, water activity (aw), thickness, bulk density, tensile strength, elongation at break, Young's modulus, bending strength, maximum deflection, and sorption isotherms were investigated. Reinforcements slightly increased the foams bulk density, reduced the tensile strength and maximum deflection and while bending strength increased from 0.20 MPa to 1.17-1.80 MPa. The elasticity modulus decreased by adding any filling, that resulted in ductility improvement; however, these packaging have moisture-sensitive material especially for aw higher than 0.52, which drives the use recommendation for dry products storage or shipping/transport. The biodegradable starch foam trays filled with side streams were successfully produced and offer excellent alternative to petroleum-based packaging low-density material with bending strength improved.


Assuntos
Amido , Resistência à Tração , Amido/química , Água/química , Embalagem de Alimentos/métodos , Manihot/química
8.
Int J Biol Macromol ; 266(Pt 1): 131271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556239

RESUMO

Yerba mate industrial processing produces tons of powder as a by-product, this yerba mate powder (YMP) is an excellent source of biomass to develop biodegradable materials. Cassava starch modified with 1,2,3,4-butane tetracarboxylic acid (BA) in the presence of sodium propionate as a catalyst is an eco-friendly option to obtain bioadhesives. This work aimed to develop sustainable laminates from starch-based adhesives and yerba mate powder and to study their physico-chemical, structural, and mechanical properties. Blends of bioadhesive and YMP were prepared (1:1, adhesive:YMP). Monolayer materials were obtained by thermo-compression and later assembled with adhesive to obtain bilayer laminates. Bioadhesive was able to bind the yerba mate by-product fibers, as evidenced by SEM microstructure analysis, the interactions of adhesive:substrate were elucidated by ATR-FTIR and supported by chemometrics analysis. The incorporation of the catalyst decreased the rugosity of materials and their mechanical performance was improved by the action of both acid concentration and catalyst presence, requiring higher energy for puncture. Thus, it was feasible to obtain mono and bilayer laminates as an eco-compatible alternative for the design of sustainable tray-like materials based on the industrial by-product of yerba mate.


Assuntos
Adesivos , Manihot , Amido , Amido/química , Adesivos/química , Manihot/química
9.
J Sci Food Agric ; 104(8): 4561-4572, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319871

RESUMO

BACKGROUND: Consumers of boiled cassava in Africa, Latin America and Asia use specific preference criteria to evaluate its cooking quality, in terms of texture, colour and taste. To improve adoption rates of improved cassava varieties intended for consumption after boiling, these preference criteria need to be determined, quantified and integrated as post-harvest quality traits in the target product profile of boiled cassava, so that breeding programs may screen candidate varieties based on both agronomic traits and consumer preference traits. RESULTS: Surveys of various end-user groups identified seven priority quality attributes of boiled cassava covering root preparation, visual aspect, taste and texture. Three populations of contrasted cassava genotypes, from good-cooking to bad-cooking, in three countries (Uganda, Benin, Colombia) were then characterized according to these quality attributes by sensory quantitative descriptive analysis (QDA) and by standard instrumental methods. Consumers' preferences of the texture attributes mealiness and hardness were also determined. By analysis of correlations, the consumers' preferences scores were translated into thresholds of acceptability in terms of QDA scores, then in terms of instrumental measurements (water absorption during boiling and texture analysis). The thresholds of acceptability were used to identify among the Colombian and Benin populations promising genotypes for boiled cassava quality. CONCLUSION: This work demonstrates the steps of determining priority quality attributes for boiled cassava and establishing their corresponding quantitative thresholds of acceptability. The information can then be included in boiled cassava target product profiles used by cassava breeders, for better selection and adoption rates of new varieties. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Comportamento do Consumidor , Culinária , Genótipo , Manihot , Paladar , Manihot/genética , Manihot/química , Humanos , Colômbia , Benin
10.
Foods ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254503

RESUMO

Natural polysaccharides are among the renewable sources with great potential for replacing petroleum-derived chemicals as precursors to produce biodegradable films. This study aimed to prepare biopolymeric films using starch extracted from the periderm and cortex of cassava roots (waste from cassava root processing), locust bean galactomannan, and cellulose nanofibers also obtained from cassava waste. The films were prepared by casting, and their physicochemical, mechanical, and biodegradability properties were evaluated. The content of cellulose nanofibers varied from 0.5 to 2.5%. Although the addition of cellulose nanofibers did not alter the mechanical properties of the films, it significantly enhanced the vapor barrier of the films (0.055 g mm/m2 h kPa-2.5% nanofibers) and their respective stabilities in aqueous acidic and alkaline media. All prepared films were biodegradable, with complete degradation occurring within five days. The prepared films were deemed promising alternatives for minimizing environmental impacts caused by the disposal of petroleum-derived materials.

11.
Int J Biol Macromol ; 261(Pt 1): 129608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266846

RESUMO

Natural fermentation with sun-drying is a modification that promotes the expansion capacity of starch, and its effects on potato starch have not been reported so far. The aim of this study was to evaluate the effects of the amylose content of potato (Solanum tuberosum L.) starches and natural fermentation followed by oven or sun drying on its properties. Cassava starch was also used a control. Native and fermented starches were evaluated based on their chemical composition, amylose, carboxyl and carbonyl content as well as their thermal, pasty, and morphological properties. The fermentation water was evaluated by pH and titratable acidity to control the process. Puffed balls were prepared to evaluate expandability, mass loss, porosity and texture. The fermentation intensity was greater for potato and cassava starch with low-amylose content than for potato starch with higher amylose content. In addition, the acidity of the fermentation water increased faster with cassava starch than with potato starches. The fermented potato starches with the highest amylose content had low acidity and low expansion capacity compared to the fermented potato and cassava starches with low-amylose content. Fermentation and sun-drying of low-amylose potato and cassava starches increased the expansion and reduced the hardness of the puffed balls.


Assuntos
Solanum tuberosum , Amido , Amido/química , Amilose/química , Solanum tuberosum/química , Fermentação , Água
12.
Braz. j. biol ; 842024.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469301

RESUMO

Abstract Endophytic fungi are a ubiquituos group that colonize all plant species on earth. Studies comparing the location of endophytic fungi within the leaves and the sampling time in Manihot esculenta Crantz (cassava) are limited. In this study, mature leaves of M. esculenta from Panama were collected in order to compare the cultivable diversity of endophytic fungi and to determine their distribution within the leaves. A total of one hundred sixty endophytes belonging to 97 species representing 13 genera and 8 morphospecies determined as mycelia sterilia that containing 63 isolates were isolated. Cladosporium, Nigrospora, Periconia, and mycelia sterilia 1 and 3 were the most predominant isolated endophytes. We detected that endophytes varied across the sampling time, but not amongst locations within leaves. The endophytes composition across sampling and the location of endophytes within leaf was similar, except for Periconia and mycelia sterilia 3 and 7. The data generated in this study contribute to the knowledge on the biodiversity of endophytic fungi in Panama, and establish the bases for future research focused on understanding the function of endophytes in M. esculenta crops.


Resumo Os fungos endofíticos são um grupo ubiquituo que colonizam todas as espécies de plantas na terra. Os estudos que comparam a localização dos fungos endofíticos dentro das folhas de Manihot esculenta Crantz (mandioca) e o tempo de amostragem são muito escassos. Neste estudo, folhas maduras de M. esculenta foram coletadas do Panamá com a finalidade de comparar a diversidade cultivável de endófitos e determinar sua distribuição dentro das folhas. Um total de 170 endófitos foram isolados de 97 espécies que representam 13 gêneros e 8 morfoespécies determinadas como micélios esterilizados contendo 63 isolados. Os fungos Cladosporium, Nigrospora, Periconia e mycelia sterilia 1 e 3 foram os isolados mais predominantes. Também detectamos que os endófitos variaram ao longo do tempo de amostragem, mas não entre os locais dentro das folhas. A composição de endófitos na amostragem e localização de endófitos dentro da folha foi semelhante, exceto para Periconia e mycelia sterilia 3 e 7. Os dados gerados neste estudo contribuem para o conhecimento da biodiversidade de fungos endofíticos no Panamá e estabelecem as bases para pesquisas sobre o entendimento da função de endófitos em culturas de M. esculenta.

13.
Protoplasma ; 261(3): 513-525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38114665

RESUMO

The galls can offer shelter, protection, and an adequate diet for the gall-inducing organisms. Herein, we evaluated the structure of Manihot esculenta leaves and galls induced by Iatrophobia brasiliensis in order to identify metabolic and cell wall composition changes. We expected to find a complex gall with high primary metabolism in a typical nutritive tissue. Non-galled leaves and galls were subjected to anatomical, histochemical, and immunocytochemical analyses to evaluate the structural features, primary and secondary metabolites, and glycoproteins, pectins, and hemicelluloses in the cell wall. The gall is cylindric, with a uniseriate epidermis, a larval chamber, and a parenchymatic cortex divided into outer and inner compartments. The outer compartment has large cells with intercellular spaces and stocks starch and is designated as storage tissue. Reducing sugars, proteins, phenolic compounds, and alkaloids were detected in the protoplast of inner tissue cells of galls, named nutritive tissue, which presents five layers of compact small cells. Cell walls with esterified homogalacturonans (HGs) occurred in some cells of the galls indicating the continuous biosynthesis of HGs. For both non-galled leaves and galls, galactans and xyloglucans were broadly labeled on the cell walls, indicating a cell growth capacity and cell wall stiffness, respectively. The cell wall of the nutritive tissue had wide labeling for glycoproteins, HGs, heteroxylans, and xyloglucans, which can be used as source for the diet of the galling insect. Manihot esculenta galls have compartments specialized in the protection and feeding of the galling insect, structured by nutritive tissue rich in resource compounds, in the cell walls and protoplast.


Assuntos
Dípteros , Euphorbiaceae , Manihot , Transtornos Fóbicos , Animais , Protoplastos , Glicoproteínas/metabolismo , Parede Celular , Tumores de Planta , Folhas de Planta/metabolismo
14.
Braz. j. biol ; 84: e253156, 2024. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355904

RESUMO

Abstract Endophytic fungi are a ubiquituos group that colonize all plant species on earth. Studies comparing the location of endophytic fungi within the leaves and the sampling time in Manihot esculenta Crantz (cassava) are limited. In this study, mature leaves of M. esculenta from Panama were collected in order to compare the cultivable diversity of endophytic fungi and to determine their distribution within the leaves. A total of one hundred sixty endophytes belonging to 97 species representing 13 genera and 8 morphospecies determined as mycelia sterilia that containing 63 isolates were isolated. Cladosporium, Nigrospora, Periconia, and mycelia sterilia 1 and 3 were the most predominant isolated endophytes. We detected that endophytes varied across the sampling time, but not amongst locations within leaves. The endophytes composition across sampling and the location of endophytes within leaf was similar, except for Periconia and mycelia sterilia 3 and 7. The data generated in this study contribute to the knowledge on the biodiversity of endophytic fungi in Panama, and establish the bases for future research focused on understanding the function of endophytes in M. esculenta crops.


Resumo Os fungos endofíticos são um grupo ubiquituo que colonizam todas as espécies de plantas na terra. Os estudos que comparam a localização dos fungos endofíticos dentro das folhas de Manihot esculenta Crantz (mandioca) e o tempo de amostragem são muito escassos. Neste estudo, folhas maduras de M. esculenta foram coletadas do Panamá com a finalidade de comparar a diversidade cultivável de endófitos e determinar sua distribuição dentro das folhas. Um total de 170 endófitos foram isolados de 97 espécies que representam 13 gêneros e 8 morfoespécies determinadas como micélios esterilizados contendo 63 isolados. Os fungos Cladosporium, Nigrospora, Periconia e mycelia sterilia 1 e 3 foram os isolados mais predominantes. Também detectamos que os endófitos variaram ao longo do tempo de amostragem, mas não entre os locais dentro das folhas. A composição de endófitos na amostragem e localização de endófitos dentro da folha foi semelhante, exceto para Periconia e mycelia sterilia 3 e 7. Os dados gerados neste estudo contribuem para o conhecimento da biodiversidade de fungos endofíticos no Panamá e estabelecem as bases para pesquisas sobre o entendimento da função de endófitos em culturas de M. esculenta.


Assuntos
Ascomicetos , Manihot , Filogenia , Folhas de Planta , Biodiversidade , Endófitos , Fungos
15.
Neotrop Entomol ; 53(1): 83-90, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100049

RESUMO

Eubulus cf. elongatus Hustache (Coleoptera: Curculionidae) is a Neotropical species recently considered an important pest of cassava (Manihot esculenta Crantz) in Brazil. This weevil feeds on cassava roots under the soil, which makes detection and control by traditional methods as pesticide quite ineffective. Besides that, no information is available about morphology, sex identification, and behavior. Given its recent category as a pest, its morphology, sex identification, and behavior were previously unknown. Laboratory reared adults of E. cf. elongatus emerged from pupal chambers originated from Embrapa Cerrados (Planaltina, Federal District, Brazil) were used to investigate sexual dimorphism, sex ratio, diel activity, and mating behavior. The visible sexual dimorphism was observed in the hind tibiae of females, which presents a more expansive distal portion than a proximal portion. The sex ratio analysis of E. cf. elongatus evidenced a proportion of males and females, approximately 1:1 in 2018, while 1.5:1, both similar to other species of curculionids. Males and females show predominantly nocturnal activity, including the mating attempts during scotophase. Three distinct phases of mating behavior developed by E. cf. elongatus are described: (i) pre-copulation, (ii) copulation, and (iii) post-copulation. The results obtained in this study provide essential information for developing monitoring and control strategies within an integrated management program for this critical pest species in cassava crops in Brazil.


Assuntos
Besouros , Manihot , Gorgulhos , Masculino , Feminino , Animais , Caracteres Sexuais , Produtos Agrícolas , Verduras
16.
J Fungi (Basel) ; 9(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132731

RESUMO

Superelongation disease (SED) is a fungal disease that affects cassava in the Caribbean. The symptoms include the appearance of dry necrotic spots and lesions on the leaves, which may severely affect the plant yield. However, the primary causal pathogen is difficult to culture and isolate in the lab because of its slow growth and potential contamination from faster-growing organisms. In addition, the leaf symptoms can be confused with those caused by other pathogens that produce similar necrotic spots and scab-like lesions. There is also little or no information on the contribution of endophytes, if any, to disease symptoms in cassava, a plant where the disease is prevalent. Therefore, this study aimed to characterize the fungal communities in cassava associated with SED symptoms by analyzing gross fungal morphology and performing metagenomics profiling. First, several individual pathogenic fungi were isolated and cultured from diseased cassava leaf tissues from seven locations in Barbados (BB). Both culture isolation and molecular community analyses showed the presence of several other fungi in the disease microenvironment of symptomatic cassava leaves. These included Fusarium, Colletotrichum, and Alternaria species and the suspected species Elsinoë brasiliensis synonym Sphaceloma manihoticola. Additionally, a community analysis using ITS2 amplicon sequencing of 21 symptomatic leaf tissues from BB, St. Vincent and the Grenadines (SVG), Trinidad and Tobago (TT), and Jamaica (JA) revealed that the disease symptoms of superelongation may also result from the interactions of fungal communities in the mycobiome, including Elsinoë species and other fungi such as Colletotrichum, Cercospora, Alternaria, and Fusarium. Therefore, we suggest that examining the pathobiome concept in SED in the future is necessary.

17.
J Sci Food Agric ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37961830

RESUMO

BACKGROUND: Cassava roots are widely consumed in tropical regions of Asia, Africa, and Latin America. Although the protein, vitamin, carotenoid, and mineral content in the leaves makes them a nutritionally attractive option, their consumption is limited due to their high levels of cyanogenic compounds (CCs). In this study, the CC content in different parts of the plant (leaves, storage root cortex, and parenchyma) was assessed at harvest for 50 landrace genotypes representative of cassava diversity in Latin America. The changes in CC in leaves at different physiological ages (3, 6, 9, and 11 months after planting) were also investigated. RESULTS: The average CC was higher in the cortex (804 ppm) and leaves (655 ppm) than in root parenchyma (305 ppm). Genotypes from different regions of Latin America, as identified by seven genetic diversity groups, differed significantly in CC levels. The Andean and Amazon groups had, respectively, the lowest (P = 0.0008) and highest (P < 0.0001) CC levels in all three parts of the plants. Cyanogenic compound concentrations were higher in leaves from young plants (P < 0.0001) and decreased with increasing physiological age. CONCLUSION: The results help to guide the selection of parental lines with low CC levels for breeding and to contribute to the expanded use of cassava and its by-products for food and feed. Cassava for fresh consumption, especially, requires varieties with low total CC content, especially in the root cortex and parenchyma. COL1108 (204, 213, and 174 ppm, respectively, in the parenchyma, cortex, and leaves) and PER297 (83, 238, and 299 ppm, respectively, in the parenchyma, cortex, and leaves) can fulfill this requirement. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

18.
Polymers (Basel) ; 15(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959942

RESUMO

Edible films based on fruit and vegetable purees combined with different food-grade biopolymeric binding agents (e.g., pectin, gelatin, starch, sodium alginate) are recognized as interesting packaging materials that benefit from the physical, mechanical, and barrier properties of biopolymers as well as the sensory and nutritional properties of purees. In the current contribution, edible antioxidant films based on pear juice and pregelatinized cassava starch were developed. In particular, the suitability of using pregelatinized cassava starch for the non-thermal production of these novel edible films was evaluated. In addition, the effects on the films' properties derived from the use of pear juice instead of the complete puree, from the content of juice used, and from the carbohydrate composition associated with the ripening of pears were all studied. The produced films were characterized in terms of their total polyphenol content, water sensitivity, and water barrier, optical, mechanical and antioxidant properties. Results showed that the use of pear juice leads to films with enhanced transparency compared with puree-based films, and that juice concentration and carbohydrate composition associated with the degree of fruit ripeness strongly govern the films' properties. Furthermore, the addition of pregelatinized cassava starch at room temperature discloses a significant and favorable impact on the cohesiveness, lightness, water resistance, and adhesiveness of the pear-juice-based films, which is mainly attributed to the effective interactions established between the starch macromolecules and the juice components.

19.
Nutr Neurosci ; : 1-9, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948133

RESUMO

OBJECTIVE: The Manihot esculenta Crantz (Cassava) is a typical South American plant rich in nutrients and energetic compounds. Lately, our group has shown that non-pharmacological interventions with natural antioxidants present different neuroprotective effects on oxidative balance and memory deficits in AD-like animal models. Here, our objective was to evaluate the neuroprotective effects of Cassava leaves' extract (CAS) in an AD-like model induced by amyloid-beta (Aß) 25-35 peptide. METHODS: Male Wistar rats (n = 40; 60 days old) were subjected to 10 days of CAS supplementation; then, we injected 2 µL Aß 25-35 in the hippocampus by stereotaxic surgery. Ten days later, we evaluated object recognition (OR) memory. Cassavas' total polyphenols, flavonoids, and condensed tannins content were measured, as well as hippocampal lipid peroxidation and total antioxidant capacity. RESULTS: CAS protected against Aß-induced OR memory deficits. In addition, Aß promoted antioxidant capacity decrease, while CAS was able to prevent it, in addition to diminishing lipoperoxidation compared to Aß. DISCUSSION: We show that treatment with Cassava leaves' extract before AD induction prevents recognition memory deficits related to Aß hippocampal injection. At least part of these effects can be related to the Cassava leaves' extract supplementation effects on diminishing lipid peroxidation and preventing a decrease in the hippocampal total antioxidant capacity in the hippocampus of AD-like animals without adverse effects. Once cassavais a plant of warm and dry ground that can adapt to growon various soil types and seems to resist several insects, our results enable Cassava to be considered asa potential preventive intervention to avoid or minimizeAD-induced memory deficits worldwide.

20.
Polymers (Basel) ; 15(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896394

RESUMO

This study evaluates the effect of lithium salts on the structural, electrochemical, and thermal properties of cassava starch solid biopolymer electrolytes (SBPEs). Films of SBPEs were synthesized using plasticizing agents and lithium salts (LiCl, Li2SO4, and CF3LiSO3) via thermochemical method. The SBPEs with lithium salts exhibited characteristic FTIR bands starch, with slight variations in the vibration oxygen-related functional groups compared to salt-free biopolymer spectra. The RCOH/COC index (short-range crystallinity) was higher in the films synthesized without lithium salt and the lowest value was established in the films synthesized with Li2SO4. Thermal degradation involved dehydration between 40 to 110 °C and molecular decomposition between 245 to 335 °C. Degradation temperatures were close when synthesized with salts but differed in films without lithium salt. DSC revealed two endothermic processes: one around 65 °C linked to crystalline structure changes and the second at approximately 271 °C associated with glucose ring decomposition. The electrochemical behavior of the SBPEs varied with the salts used, resulting in differences in the potential and current of peaks from the redox processes and its conductivity, presenting the lowest value (8.42 × 10-5 S cm-1) in the SBPE films without salt and highest value (9.54 × 10-3 S cm-1) in the films with Li2SO4. It was concluded that the type of lithium salt used in SBPEs synthesis affected their properties. SBPEs with lithium triflate showed higher molecular ordering, thermal stability, and lower redox potentials in electrochemical processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA