Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Physiol ; 6: 123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26005421

RESUMO

The last decade has brought a comprehensive change in our view of cardiac remodeling processes under both physiological and pathological conditions, and cardiac stem cells have become important new players in the general mainframe of cardiac homeostasis. Different types of cardiac stem cells show different capacities for differentiation into the three major cardiac lineages: myocytes, endothelial cells and smooth muscle cells. Physiologically, cardiac stem cells contribute to cardiac homeostasis through continual cellular turnover. Pathologically, these cells exhibit a high level of proliferative activity in an apparent attempt to repair acute cardiac injury, indicating that these cells possess (albeit limited) regenerative potential. In addition to cardiac stem cells, mesenchymal stem cells represent another multipotent cell population in the heart; these cells are located in regions near pericytes and exhibit regenerative, angiogenic, antiapoptotic, and immunosuppressive properties. The discovery of these resident cardiac stem cells was followed by a number of experimental studies in animal models of cardiomyopathies, in which cardiac stem cells were tested as a therapeutic option to overcome the limited transdifferentiating potential of hematopoietic or mesenchymal stem cells derived from bone marrow. The promising results of these studies prompted clinical studies of the role of these cells, which have demonstrated the safety and practicability of cellular therapies for the treatment of heart disease. However, questions remain regarding this new therapeutic approach. Thus, the aim of the present review was to discuss the multitude of different cardiac stem cells that have been identified, their possible functional roles in the cardiac regenerative process, and their potential therapeutic uses in treating cardiac diseases.

3.
Biosci. j. (Online) ; 29(5): 1403-1404, sept./oct. 2013.
Artigo em Português | LILACS | ID: biblio-946948

RESUMO

No Brasil, como em todo o mundo, as doenças cardiovasculares têm sido uma das principais causas de morte. A alta mortalidade e as poucas alternativas terapêuticas para esta doença têm estimulado a investigação no campo das células estaminais. Recentemente, alguns grupos têm mostrado a presença de células-tronco/progenitoras residentes no coração. Estas poderiam ser cultivadas diretamente a partir de tecidos cardíacos produzindo aglomerados esféricos denominados Cardioesferas estas, contém células proliferativas que dão origem, após o plaqueamento, a uma população heterogênea denominada: células derivadas de cardioesferas (CDCs). O objetivo deste estudo foi isolar, cultivar e caracterizar as CDCs de camundongos da linhagem CD1. Para isto, as células primárias foram isoladas a partir de corações de camundongos adultos da linhagem CD1 após a digestão de pequenos fragmentos do órgão em 420U/ml utilizando colagenase tipo II por 20 minutos 37°C. Nas análises por Citometria de Fluxo (FACS) foram observadas baixa expressão das moléculas de CD19 (0,4%), CD45 (0,5%) e CD90 (4,77%), e alta expressão das moléculas CD73 (71,47%), CD105 (25,1%), CD14 (25,17%). Nos ensaios de imunofluorescência foi possível observar a expressão das proteínas no citoplasma dos cardiomiócitos: vimentina, desmina e alfa actina de músculo liso, além da expressão do filamento intermediário nestina. Ao analisar a expansão celular por population doubling time foi observado que as CDCs duplicaram sua população original em cerca de 1,8 dias. Estes resultados sugerem que as CDCs isoladas a partir de camundongos da linhagem CD1, são células que apresentam características de células mesenquimais, constituindo uma população celular a ser testada nos estudos em terapias celulares. Estes resultados, motiva a estabelecer protocolos mais efetivos a fim de investigar possíveis efeitos parácrinos benéficos, bem como o potencial angiogênico e cardiogênico destas células.


In Brazil, as elsewhere in the world, cardiovascular diseases have been a major cause of death. The high mortality and few therapeutic alternatives for this disease have stimulated research in the field of stem cells. Recently, some groups have shown the presence of stem cells residents at heart. These could be grown directly from tissue cardiac producing spherical agglomerates called cardiospheres these contains proliferating cells that give rise after plating, a heterogeneous population named: cells derived from cardiospheres (CDC). Our goal in this study was to isolate and characterize the cultivar CDC CD1 strain of mice. For this purpose, primary cells were isolated from hearts of adult mice of the CD1 strain after digestion of the organ into small fragments using 420U/ml collagenase type II for 20 minutes 37 ° C. In analysis by Flow Cytometry (FACS) were observed low expression of CD19 molecules (0.4%), CD45 (0.5%) and CD90 (4.77%), and high expression of the molecules CD73 (71.47%), CD105 (25.1%), CD14 (25.17%). In the immunofluorescence assays was possible to observe the expression of the proteins in the cytoplasm of cardiomyocytes: vimentin, desmin and smooth muscle alpha actin, and expression of the intermediate filament nestin. By analyzing the cellular expansion team for Population doubling was observed that the original CDC doubled its population in about 1.8 days. These results suggest that CDCs isolated from CD1 mouse strain to be have characteristics of mesenchymal cells, constituting a potential population studied in cellular therapies, motivating us to establish more effective protocols to investigate possible beneficial paracrine effects and their angiogenic and cardiogenic potential.


Assuntos
Células-Tronco , Miócitos Cardíacos , Coração , Camundongos
4.
World J Cardiol ; 2(5): 107-11, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21160711

RESUMO

The heart has been considered a post-mitotic organ without regenerative capacity for most of the last century. We review the evidence that led to this hypothesis in the early 1900s and how it was progressively modified, culminating with the report that we renew 50% of our cardiomyocytes during our lifetime. The future of cardiac regenerative therapies is discussed, presenting the difficulties to overcome before repair of the diseased heart can come into clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA