Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 351: 122846, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880165

RESUMO

Understanding the mechanisms controlling platelet function is crucial for exploring potential therapeutic targets related to atherothrombotic pathologies and primary hemostasis disorders. Our research, which focuses on the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis, has significant implications for the development of new therapeutic strategies. Traditionally, Ca2+-dependent cellular signaling has been recognized as a determinant process throughout the platelet activation, controlled primarily by store-operated Ca2+ entry and the PLC-PKC signaling pathway. However, despite the accumulated knowledge of these regulatory mechanisms, the effectiveness of therapy based on various commonly used antiplatelet drugs (such as acetylsalicylic acid and clopidogrel, among others) has faced challenges due to bleeding risks and reduced efficacy associated with the phenomenon of high platelet reactivity. Recent evidence suggests that platelet mitochondria could play a fundamental role in these aspects through Ca2+-dependent mechanisms linked to apoptosis and forming a procoagulant phenotype. In this context, the present review describes the latest advances regarding the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis.


Assuntos
Envelhecimento , Plaquetas , Cálcio , Mitocôndrias , Ativação Plaquetária , Humanos , Mitocôndrias/metabolismo , Ativação Plaquetária/fisiologia , Cálcio/metabolismo , Plaquetas/metabolismo , Envelhecimento/metabolismo , Animais , Trombose/metabolismo , Sinalização do Cálcio/fisiologia
2.
J Oral Biol Craniofac Res ; 13(1): 71-77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36479039

RESUMO

Objectives: Dental pain, which is the main reason for patients consulting dentists, is classified as a public health concern. The study of cellular and molecular mechanisms contributing to pain is a fundamental element for developing new analgesics. By using a selective antagonist in an in vitro model, this study aimed to establish the role of TRPV-1 in human odontoblast-like cells (OLCs) as a therapeutic target for dental pain mediated by noxious thermal and osmotic stimuli. Methods: OLCs were differentiated from dental pulp mesenchymal cells and TRPV1 expression was evaluated. Activation of TRPV-1 was determined by evaluating changes in calcium concentration after stimulation with mannitol and xylitol hyperosmotic solutions or DMEM heated at 45 °C, using the fluorescent calcium probe Fluo-4 AM. In addition, changes in fluorescence (F/F0) due to calcium flux were evaluated using fluorometry and flow cytometry. Simultaneously, the cells were co-stimulated with the selective antagonist capsazepine (CZP). Results: OLCs expressed DSPP and DMP-1, confirming their cellular phenotype. TRPV1 was expressed, and its activation by different stimuli produced an increase in cytosolic Ca2+ which was reduced by the antagonist. Both methods used to evaluate TRPV1 activation through the measurement of calcium probe fluorescence showed similar patterns. Conclusions: These results suggest that TRPV-1 modulation using an antagonist can be implemented as a pharmacological strategy for managing dental pain mediated by hyperosmotic and thermal stimuli.

3.
Mitochondrion ; 49: 73-82, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31310854

RESUMO

Cytosolic calcium (cCa2+) entry into mitochondria is facilitated by the mitochondrial membrane potential (ΔΨm), an electrochemical gradient generated by the electron transport chain (ETC). Is has been assumed that as long as mutations that affect the ETC do not affect the ΔΨm, the mitochondrial Ca2+ (mCa2+) homeostasis remains normal. We show that knockdown of NDUFAF3 and SDHB reduce ETC activity altering mCa2+ efflux and influx rates while ΔΨm remains intact. Shifting the equilibrium toward lower [Ca2+]m accumulation renders cells resistant to death. Our findings reveal an unexpected relationship between complex I and II with the mCa2+ homeostasis independent of ΔΨm.


Assuntos
Cálcio/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Homeostase , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Succinato Desidrogenase/metabolismo , Complexo I de Transporte de Elétrons/genética , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Succinato Desidrogenase/genética
4.
Int J Mol Sci ; 17(6)2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27314332

RESUMO

In adulthood, differentiation of precursor cells into neurons continues in several brain structures as well as in the olfactory neuroepithelium. Isolated precursors allow the study of the neurodevelopmental process in vitro. The aim of this work was to determine whether the expression of functional Voltage-Activated Ca(2+) Channels (VACC) is dependent on the neurodevelopmental stage in neuronal cells obtained from the human olfactory epithelium of a single healthy donor. The presence of channel-forming proteins in Olfactory Sensory Neurons (OSN) was demonstrated by immunofluorescent labeling, and VACC functioning was assessed by microfluorometry and the patch-clamp technique. VACC were immunodetected only in OSN. Mature neurons responded to forskolin with a five-fold increase in Ca(2+). By contrast, in precursor cells, a subtle response was observed. The involvement of VACC in the precursors' response was discarded for the absence of transmembrane inward Ca(2+) movement evoked by step depolarizations. Data suggest differential expression of VACC in neuronal cells depending on their developmental stage and also that the expression of these channels is acquired by OSN during maturation, to enable specialized functions such as ion movement triggered by membrane depolarization. The results support that VACC in OSN could be considered as a functional marker to study neurodevelopment.


Assuntos
Canais de Cálcio/metabolismo , Células Neuroepiteliais/metabolismo , Neurogênese , Neurônios Receptores Olfatórios/metabolismo , Esquizofrenia/metabolismo , Biomarcadores/metabolismo , Canais de Cálcio/genética , Células Cultivadas , Feminino , Humanos , Células Neuroepiteliais/citologia , Neurônios Receptores Olfatórios/citologia , Esquizofrenia/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA