RESUMO
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality by a single infectious agent in the world. M. tuberculosis infection could also result in clinical chronic infection, known as latent TB infection (LTBI). Compared to the current limited treatment, several subunit vaccines showed immunotherapeutic effects and were included in clinical trials. In this study, a subunit vaccine of Ag85B with a novel mucosal adjuvant c-di-AMP (Ag85B:c-di-AMP) was delivered intranasally to a persistent M. tuberculosis H37Ra infection mouse model, which also presented the asymptomatic characteristics of LTBI. Compared with Ag85B immunization, Ag85B:c-di-AMP vaccination induced stronger humoral immune responses, significantly higher CD4+ T cells recruitment, enhanced Th1/Th2/Th17 profile response in the lung, decreased pathological lesions of the lung, and reduced M. tuberculosis load in mice. Taken together, Ag85B:c-di-AMP mucosal route immunization provided an immunotherapeutic effect on persistent M. tuberculosis H37Ra infection, and c-di-AMP, as a promising potential mucosal adjuvant, could be further used in therapeutic or prophylactic vaccine strategies for persistent M. tuberculosis infection as well as LTBI.
RESUMO
Trypanosoma cruzi, the agent of Chagas disease, can infect through conjunctive or oral mucosas. Therefore, the induction of mucosal immunity by vaccination is relevant not only to trigger local protection but also to stimulate both humoral and cell-mediated responses in systemic sites to control parasite dissemination. In a previous study, we demonstrated that a nasal vaccine based on a Trans-sialidase (TS) fragment plus the mucosal STING agonist c-di-AMP, was highly immunogenic and elicited prophylactic capacity. However, the immune profile induced by TS-based nasal vaccines at the nasopharyngeal-associated lymphoid tissue (NALT), the target site of nasal immunization, remains unknown. Hence, we analyzed the NALT cytokine expression generated by a TS-based vaccine plus c-di-AMP (TSdA+c-di-AMP) and their association with mucosal and systemic immunogenicity. The vaccine was administered intranasally, in 3 doses separated by 15 days each other. Control groups received TSdA, c-di-AMP, or the vehicle in a similar schedule. We demonstrated that female BALB/c mice immunized intranasally with TSdA+c-di-AMP boosted NALT expression of IFN-γ and IL-6, as well as IFN-ß and TGF-ß. TSdA+c-di-AMP increased TSdA-specific IgA secretion in the nasal passages and also in the distal intestinal mucosa. Moreover, T and B-lymphocytes from NALT-draining cervical lymph nodes and spleen showed an intense proliferation after ex-vivo stimulation with TSdA. Intranasal administration of TSdA+c-di-AMP provokes an enhancement of TSdA-specific IgG2a and IgG1 plasma antibodies, accompanied by an increase IgG2a/IgG1 ratio, indicative of a Th1-biased profile. In addition, immune plasma derived from TSdA+c-di-AMP vaccinated mice exhibit in-vivo and ex-vivo protective capacity. Lastly, TSdA+c-di-AMP nasal vaccine also promotes intense footpad swelling after local TSdA challenge. Our data support that TSdA+c-di-AMP nasal vaccine triggers a NALT mixed pattern of cytokines that were clearly associated with an evident mucosal and systemic immunogenicity. These data are useful for further understanding the immune responses elicited by the NALT following intranasal immunization and the rational design of TS-based vaccination strategies for prophylaxis against T. cruzi.
Assuntos
Doença de Chagas , Trypanosoma cruzi , Vacinas , Feminino , Animais , Camundongos , Administração Intranasal , Imunidade nas Mucosas , Linfonodos , Doença de Chagas/prevenção & controle , Citocinas/metabolismo , Nasofaringe/metabolismo , Mucosa Intestinal/metabolismo , Imunoglobulina G , Camundongos Endogâmicos BALB CRESUMO
Novel adjuvants are highly desired to improve immune responses of SARS-CoV-2 vaccines. This work reports the potential of the stimulator of interferon genes (STING) agonist adjuvant, the cyclic di-adenosine monophosphate (c-di-AMP), in a SARS-CoV-2 vaccine based on the receptor binding domain (RBD). Here, mice immunized with two doses of monomeric RBD adjuvanted with c-di-AMP intramuscularly were found to exhibit stronger immune responses compared to mice vaccinated with RBD adjuvanted with aluminum hydroxide (Al(OH)3 ) or without adjuvant. After two immunizations, consistent enhancements in the magnitude of RBD-specific immunoglobulin G (IgG) antibody response were observed by RBD + c-di-AMP (mean: 15360) compared to RBD + Al(OH)3 (mean: 3280) and RBD alone (n.d.). Analysis of IgG subtypes indicated a predominantly Th1-biased immune response (IgG2c, mean: 14480; IgG2b, mean: 1040, IgG1, mean: 470) in mice vaccinated with RBD + c-di-AMP compared to a Th2-biased response in those vaccinated with RBD + Al(OH)3 (IgG2c, mean: 60; IgG2b: n.d.; IgG1, mean: 16660). In addition, the RBD + c-di-AMP group showed better neutralizing antibody responses as determined by pseudovirus neutralization assay and by plaque reduction neutralization assay with SARS-CoV-2 wild type. Moreover, the RBD + c-di-AMP vaccine promoted interferon-γ secretion of spleen cell cultures after RBD stimulation. Furthermore, evaluation of IgG-antibody titers in aged mice showed that di-AMP was able to improve RBD-immunogenicity at old age after 3 doses (mean: 4000). These data suggest that c-di-AMP improves immune responses of a SARS-CoV-2 vaccine based on RBD, and would be considered a promising option for future COVID-19 vaccines.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Camundongos , Humanos , SARS-CoV-2 , Adjuvantes Imunológicos , Imunidade Celular , Anticorpos Neutralizantes , Adjuvantes Farmacêuticos , Imunoglobulina G , Monofosfato de Adenosina , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus , Imunidade HumoralRESUMO
The new generation of vaccines for Chagas disease, are focused to induce both humoral and cellular response to effectively control Trypanosoma cruzi parasites. The administration of vaccine formulations intranasally has the advantage over parenteral routes that can induce a specific response at mucosal and systemic levels. This study aimed to evaluate and compare the immunogenicity and prophylactic effectiveness of two Trans-sialidase (TS)-based mucosal vaccines against T. cruzi administered intranasally. Vaccines consisted of a recombinant fragment of TS expressed in Lactococcus lactis formulated in two different adjuvants. The first, was an immunostimulant particle (ISPA, an ISCOMATRIX-like adjuvant), while the second was the dinucleotide c-di-AMP, which have shown immunostimulant properties at the mucosal level. BALB/c mice were immunized intranasally (3 doses, one every two weeks) with each formulation (TS + ISPA or TS + c-di-AMP) and with TS alone or vehicle (saline solution) as controls. Fifteen days after the last immunization, both TS + ISPA or TS + c-di-AMP induced an evident systemic humoral and cellular response, as judged by the increased plasma anti-TS IgG2a titers and IgG2a/IgG1 ratio and enhanced cellular response against TS. Plasma derived antibodies from TS + c-di-AMP also inhibit in vitro the invasion capacity of T. cruzi. Furthermore, specific secretory IgA was more enhanced in TS + c-di-AMP group. Protective efficacy was proved in vaccinated animals by an oral T. cruzi-challenge. Parasitemia control was only achieved by animals vaccinated with TS + c-di-AMP, despite all vaccinates groups showed enhanced CD8+IFN-γ+ T cell numbers. In addition, it was reflected during the acute phase in a significant reduction of tissue parasite load, clinical manifestations and diminished tissue damage. The better prophylactic capacity elicited by TS + c-di-AMP was related to the induction of neutralizing plasma antibodies and augmented levels of mucosal IgA since TS + ISPA and TS + c-di-AMP groups displayed similar immunogenicity and CD8+IFN-γ+ T-cell response. Therefore, TS + c-di-AMP formulation appears as a promising strategy for prophylaxis against T. cruzi.
Assuntos
Doença de Chagas , Vacinas Protozoárias , Trypanosoma cruzi , Animais , Doença de Chagas/prevenção & controle , Fosfatos de Dinucleosídeos , Glicoproteínas , Imunização , Camundongos , Camundongos Endogâmicos BALB C , NeuraminidaseRESUMO
The regulation of multiple bacterial phenotypes was found to depend on different cyclic dinucleotides (CDNs) that constitute intracellular signaling second messenger systems. Most notably, c-di-GMP, along with proteins related to its synthesis, sensing, and degradation, was identified as playing a central role in the switching from biofilm to planktonic modes of growth. Recently, this research topic has been under expansion, with the discoveries of new CDNs, novel classes of CDN receptors, and the numerous functions regulated by these molecules. In this review, we comprehensively describe the three main bacterial enzymes involved in the synthesis of c-di-GMP, c-di-AMP, and cGAMP focusing on description of their three-dimensional structures and their structural similarities with other protein families, as well as the essential residues for catalysis. The diversity of CDN receptors is described in detail along with the residues important for the interaction with the ligand. Interestingly, genomic data strongly suggest that there is a tendency for bacterial cells to use both c-di-AMP and c-di-GMP signaling networks simultaneously, raising the question of whether there is crosstalk between different signaling systems. In summary, the large amount of sequence and structural data available allows a broad view of the complexity and the importance of these CDNs in the regulation of different bacterial behaviors. Nevertheless, how cells coordinate the different CDN signaling networks to ensure adaptation to changing environmental conditions is still open for much further exploration.
Assuntos
Bactérias/genética , Proteínas de Bactérias/química , GMP Cíclico/análogos & derivados , Fosfatos de Dinucleosídeos/química , Regulação Bacteriana da Expressão Gênica , Nucleotídeos Cíclicos/química , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/química , GMP Cíclico/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Modelos Moleculares , Nucleotídeos Cíclicos/metabolismo , Plâncton/genética , Plâncton/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Transdução de SinaisRESUMO
Cyclic di-AMP (c-di-AMP) is a second messenger involved in diverse metabolic processes, including osmolyte uptake, cell wall homeostasis, and antibiotic and heat resistance. In Lactococcus lactis, a lactic acid bacterium which is used in the dairy industry and as a cell factory in biotechnological processes, the only reported interaction partners of c-di-AMP are the pyruvate carboxylase and BusR, the transcription regulator of the busAB operon for glycine betaine uptake. However, recent studies uncovered a major role of c-di-AMP in the control of potassium homeostasis, and potassium is the signal that triggers c-di-AMP synthesis. In this study, we have identified KupA and KupB, which belong to the Kup/HAK/KT family, as novel c-di-AMP binding proteins. Both proteins are high-affinity potassium transporters, and their transport activities are inhibited by binding of c-di-AMP. Thus, in addition to the well-studied Ktr/Trk potassium channels, KupA and KupB represent a second class of potassium transporters that are subject to inhibition by c-di-AMP.IMPORTANCE Potassium is an essential ion in every living cell. Even though potassium is the most abundant cation in cells, its accumulation can be toxic. Therefore, the level of potassium has to be tightly controlled. In many Gram-positive bacteria, the second messenger cyclic di-AMP plays a key role in the control of potassium homeostasis by binding to potassium transporters and regulatory proteins and RNA molecules. In the lactic acid bacterium Lactococcus lactis, none of these conserved c-di-AMP-responsive molecules are present. In this study, we demonstrate that the KupA and KupB proteins of L. lactis IL1403 are high-affinity potassium transporters and that their transport activity is inhibited by the second messenger c-di-AMP.
Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Lactococcus lactis/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Potássio/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Lactococcus lactis/genética , Proteínas de Membrana Transportadoras/genética , Ligação ProteicaRESUMO
Lactococcus lactis is a promising candidate for the development of mucosal vaccines. More than 20 years of experimental research supports this immunization approach. In addition, 3' 5'- cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that plays a key role in the regulation of diverse physiological functions (potassium and cellular wall homeostasis, among others). Moreover, recent studies showed that c-di-AMP has a strong mucosal adjuvant activity that promotes both humoral and cellular immune responses. In this study, we report the development of a novel mucosal vaccine prototype based on a genetically engineered L. lactis strain. First, we demonstrate that homologous expression of cdaA gen in L. lactis is able to increase c-di-AMP levels. Thus, we hypothesized that in vivo synthesis of the adjuvant can be combined with production of an antigen of interest in a separate form or jointly in the same strain. Therefore, a specifically designed fragment of the trans-sialidase (TScf) enzyme from the Trypanosoma cruzi parasite, the etiological agent of Chagas disease, was selected to evaluate as proof of concept the immune response triggered by our vaccine prototypes. Consequently, we found that oral administration of a L. lactis strain expressing antigenic TScf combined with another L. lactis strain producing the adjuvant c-di-AMP could elicit a TS-specific immune response. Also, an additional L. lactis strain containing a single plasmid with both cdaA and tscf genes under the Pcit and Pnis promoters, respectively, was also able to elicit a specific immune response. Thus, the current report is the first one to describe an engineered L. lactis strain that simultaneously synthesizes the adjuvant c-di-AMP as well as a heterologous antigen in order to develop a simple and economical system for the formulation of vaccine prototypes using a food grade lactic acid bacterium.