RESUMO
Producing food in quantity and quality to meet the growing population demand is a challenge for the coming years. In addition to the need to improve the use and efficiency of conventional agricultural inputs, we face climate change and disparity in access to food. In this context, creating innovative, efficient, and ecologically approaches is necessary to transform this global scenario. Several delivery systems are being developed to encapsulate agrochemicals, aiming to improve the controlled release of active ingredients and protect them against environmental biotic and abiotic factors. Among these systems, hydrogel spheres are particularly notable for their ability to be fabricated from biodegradable materials, allowing the encapsulation of molecules, nanomaterials, and even organisms (e.g., bacteria and fungi). This review provides an overview of the latest progress in developing polysaccharide-based hydrogel spheres for agriculture. In addition, we describe methods for preparing hydrogel spheres and discuss the encapsulation and release of agricultural inputs in the field. Finally, we put hydrogel spheres into perspective and seek to highlight some current challenges in the field to spark new inspiration and improve the development of environmentally friendly and cost-effective delivery systems for the agricultural sector.
Assuntos
Agricultura , Preparações de Ação Retardada , Hidrogéis , Polissacarídeos , Hidrogéis/química , Agricultura/métodos , Polissacarídeos/química , Agroquímicos/químicaRESUMO
Collagen type I is a material widely used for 3D cell culture and tissue engineering. Different architectures, such as gels, sponges, membranes, and nanofibers, can be fabricated with it. In collagen hydrogels, the formation of fibrils and fibers depends on various parameters, such as the source of collagen, pH, temperature, concentration, age, etc. In this work, we study the fibrillogenesis process in collagen type I hydrogels with different types of microbeads embedded, using optical techniques such as turbidity assay and confocal reflectance microscopy. We observe that microbeads embedded in the collagen matrix hydrogels modify the fibrillogenesis. Our results show that carboxylated fluorescent microbeads accelerate 3.6 times the gelation, while silica microbeads slow down the formation of collagen fibrils by a factor of 1.9, both compared to pure collagen hydrogels. Our observations suggest that carboxylate microbeads act as nucleation sites and the early collagen fibrils bind to the microbeads.
Assuntos
Colágeno Tipo I , Hidrogéis , Microesferas , Hidrogéis/química , Colágeno Tipo I/química , Animais , Colágeno/química , Engenharia Tecidual/métodos , Concentração de Íons de Hidrogênio , Materiais Biocompatíveis/química , Dióxido de Silício/química , Microscopia Confocal , Temperatura , Ácidos Carboxílicos/química , Teste de MateriaisRESUMO
OBJECTIVE: The Neubauer hemocytometer, as well as the Makler chamber, are devices commonly used in andrology laboratories. The present study aimed to verify if both methods yield comparable results, and whether they can be used interchangeably to determine sperm concentration. METHODS: Sperm and latex beads concentration measurements were performed with the Neubauer hemocytometer and the Makler chamber. Fixed and proportional biases were estimated, and the method agreement was determined by assessing sperm concentration results with the Bland and Altman plot. The Coefficient of Variation (CV) and relative bias were calculated as an index of precision and accuracy, respectively, by measuring latex beads target concentrations in both chambers. RESULTS: The Makler chamber systematically overestimated the Neubauer hemocytometer concentration measurements by a mean of -7.99%, with limits of agreement (LOA) between -41% to 25.61% (p<0.001). The fixed bias was found for concentration values inferior to 40 x 106/ml range (p<0.001), but not higher concentration results (p>0.05). Measurements with the Neubauer hemocytometer showed the greatest consistency in the study with the CV ranging from 3.01% to 6.67%; while the CV with the Makler chamber ranged from 8.46% to 25.64%. The relative bias for the Neubauer hemocytometer determinations varied from 0.12% to 8.40%, while for the Makler chamber varied from 7.6% to an overestimation of 38.0%. CONCLUSIONS: Measurements made with the Makler chamber demonstrated more variability and a higher degree of overestimation. The Makler chamber is a poor substitute to the Neubauer hemocytometer for evaluation of oligozoospermic samples, although both chambers render similar results for highly concentrated samples.
Assuntos
Análise do Sêmen , Contagem de Espermatozoides , Humanos , Masculino , Contagem de Espermatozoides/instrumentação , Contagem de Espermatozoides/normas , Contagem de Espermatozoides/métodos , Análise do Sêmen/métodos , Análise do Sêmen/normas , Análise do Sêmen/instrumentação , Espermatozoides/citologia , Reprodutibilidade dos TestesRESUMO
Extracellular vesicles (EVs) are bilayer membrane particles released from several cell types to the extracellular environment. EVs have a crucial role in cell-cell communication, involving different biological processes in health and diseases. Due to the potential of biomarkers for several diseases as diagnostic and therapeutic tools, it is relevant to understand the biology of the EVs and their content. One of the current challenges involving EVs is regarding the purification method, which is a critical step for EV's functional and characterization studies. Ultracentrifugation is the most used method for EV isolation, where the nanoparticles are separated in sequential centrifugation to isolate the EVs based on their size. However, for viscous biofluids such as plasma, there is a co-isolation of the most abundant proteins, which can impair the EV's protein identification due to the low abundance of these proteins and signal suppression by the most abundant plasma proteins. Emerging techniques have gained attention in recent years. Titanium dioxide (TiO2) is one of the most promising techniques due to its property for selective isolation based on the interaction with phospholipids in the EV membrane. Using a small amount of TiO2 beads and a low volume of plasma, it is possible to isolate EVs with reduced plasma protein co-isolation. This study describes a comprehensive workflow for the isolation and characterization of plasma extracellular vesicles (EVs) using mass spectrometry-based proteomics techniques. The aim of this chapter is describe the EV isolation using TiO2 beads enrichment and high-throughput mass spectrometry techniques to efficiently identify the protein composition of EVs in a fast and straightforward manner.
Assuntos
Vesículas Extracelulares , Titânio , Microesferas , Vesículas Extracelulares/metabolismo , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , PlasmaRESUMO
Molecular diagnostic methods to detect and quantify viral RNA in clinical samples rely on the purification of the genetic material prior to reverse transcription polymerase chain reaction (qRT-PCR). Due to the large number of samples processed in clinical laboratories, automation has become a necessity in order to increase method processivity and maximize throughput per unit of time. An attractive option for isolating viral RNA is based on the magnetic solid phase separation procedure (MSPS) using magnetic microparticles. This method offers the advantage over other alternative methods of making it possible to automate the process. In this study, we report the results of the MSPS method based on magnetic microparticles obtained by a simple synthesis process, to purify RNA from oro- and nasopharyngeal swab samples of patients suspected of COVID-19 provided by three diagnostic laboratories located in the Buenos Aires Province, Argentina. Magnetite nanoparticles of Fe3O4 (MNPs) were synthesized by the coprecipitation method and then coated with silica (SiO2) produced by hydrolysis of tetraethyl orthosilicate (TEOS). After preliminary tests on samples from the A549 human lung cell line and swabs, an extraction protocol was developed. The quantity and purity of the RNA obtained were determined by gel electrophoresis, spectrophotometry, and qRT-PCR. Tests on samples from naso- and oropharyngeal swabs were performed in order to validate the method for RNA purification in high-throughput SARS-CoV-2 diagnosis by qRT-PCR. The method was compared to the spin columns method and the automated method using commercial magnetic particles. The results show that the method developed is efficient for RNA extraction from nasal and oropharyngeal swab samples, and also comparable to other extraction methods in terms of sensitivity for SARS-CoV-2 detection. Of note, this procedure and reagents developed locally were intended to overcome the shortage of imported diagnostic supplies as the sudden spread of COVID-19 required unexpected quantities of nucleic acid isolation and diagnostic kits worldwide.
RESUMO
This paper explores the application of cross-linked cellulose beads as a sustainable and cost-effective support for the ZnO/SnO2/carbon xerogel hybrid photocatalyst. The application of the developed photocatalytic beads, named CB-Cat, was directed at a simultaneous adsorption/photocatalysis process, which was carried out under simulated sunlight. The characterization of the CB-Cat indicated a good dispersion of the photocatalyst of choice throughout the cellulose matrix, confirming its incorporation into the cellulose beads. Furthermore, it is possible to observe the presence of the photocatalyst on the surface of the CB-Cat, confirming its availability for the photonic activation process. The results showed that the simultaneous adsorption/photocatalysis process was optimal for enhancing the efficiency of methylene blue (MB) removal, especially when compared to the isolated adsorption process. Additionally, the regeneration of the CB-Cat between cycles was favorable toward the maintenance of the MB removal efficiency, as the process carried out without regeneration displayed significant efficiency drops between cycles. Finally, the mechanism evaluation evidenced that hydroxyl and superoxide radicals were the main responsible for the MB photocatalytic degradation during illumination with simulated sunlight.
Assuntos
Poluentes Químicos da Água , Óxido de Zinco , Carbono , Adsorção , Celulose , Luz Solar , Azul de MetilenoRESUMO
Although sodium alginate (SA) is frequently utilized because of its good gelling properties, the substance's dearth of adsorption active sites prevents it from effectively removing heavy metals. Herein, SA was used as the base material to form a cross-linked structure with Fe3+ and Mg2+, and gel beads with a diameter of 2.0 ± 0.1 mm with specific adsorption on As(V) were synthesized as adsorbent (Fe/Mg-SA). Fe/Mg-SA was systematically characterized, and its adsorption properties were investigated by varying several conditions. Fe/Mg-SA had a wide pH application range. The adsorption kinetics revealed that a quasi-secondary kinetic model was followed. The adsorption process is linked to the complexation of hydroxyl and AsO43-, chemisorption predominated the adsorption process. The maximal adsorption capacity of Fe/Mg-SA is determined by fitting the Langmuir model to be 37.4 mg/g. Compared to other adsorbents, it is simpler to synthesis, more effective and cheaper. Each treatment of 1 m3 wastewater of Fe/Mg-SA only costs ¥ 38.612. The novel gel beads synthesized provides a better option for purifying groundwater contaminated with As(V).
Assuntos
Metais Pesados , Poluentes Químicos da Água , Alginatos/química , Adsorção , Porosidade , Metais Pesados/química , Géis/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de HidrogênioRESUMO
The use of Bacillus as biofertilizer is a sustainable strategy to increase agricultural productivity, but it still requires the development of formulations to protect cells from stressful conditions. Ionotropic gelation using a pectin/starch matrix is a promising encapsulation strategy to achieve this goal. By incorporating additives such as montmorillonite (MMT), attapulgite (ATP), polyethylene glycol (PEG), and carboxymethyl cellulose (CMC), the properties of these encapsulated products could be further improved. In this study, we investigated the influence of these additives on the properties of pectin/starch-based beads for the encapsulation of Bacillus subtilis. FTIR analysis indicated pectin and Ca2+ ions interactions, while the XRD showed good dispersion of clays in the materials. SEM and X-ray microtomography revealed differences in the morphology of the beads due to the use of the additives. The viabilities at the encapsulation were higher than 1010 CFU g-1 for all formulations, with differences in the release profiles. In terms of cell protection, the pectin/starch, pectin/starch-MMT and pectin/starch-CMC formulations showed the highest cell viability after exposure to fungicide, while the pectin/starch-ATP beads showed the best performance after UV exposure. Moreover, all formulations maintained more than 109 CFU g-1 after six months of storage, which meets values required for microbial inoculants.
Assuntos
Bacillus subtilis , Pectinas , Amido , Portadores de Fármacos , Trifosfato de AdenosinaRESUMO
The outbreak of COVID-19, a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is regarded as the most severe of the documented coronavirus pandemics. The measurement and monitoring of SARS-CoV-2 antibody levels by serological tests are relevant for a better epidemiological and clinical understanding of COVID-19. The aim of this work was to design a method called the SARS-CoV-2 antibody detection method (SARS-CoV-2 AbDM) for fluorescence immunodetection of anti-SARS-CoV-2 IgG and IgM on both plate and microfluidic chip. For this purpose, a system with magnetic beads that immobilize the antigen (S protein and RBD) on its surface was used to determine the presence and quantity of antibodies in a sample in a single reaction. The SARS-CoV-2 AbDM led to several advantages in the performance of the tests, such as reduced cost, possibility of performing isolated or multiple samples, potential of multiplex detection, and capacity to detect whole blood samples without losing resolution. In addition, due to the microfluidic chip in conjunction with the motorized actuated platform, the time, sample quantity, and operator intervention during the process were reduced. All these advantages suggest that the SARS-CoV-2 AbDM has the potential to be developed as a PoC that can be used as a tool for seroprevalence monitoring, allowing a better understanding of the epidemiological and clinical characteristics of COVID-19 and contributing to more effective and ethical decision-making in strategies to fight against the COVID-19 pandemic.
RESUMO
BACKGROUND: Bowel obstruction due to accidental ingestion of foreign objects occurs rarely in children because 80 to 90% of the objects can pass freely through the gastrointestinal tract. CASE REPORT: We report a case of a 14-month-old infant who presented bowel obstruction caused by the ingestion of hydrogel beads (sodium polyacrylate). Hydrogel beads are used as sensory and didactic toys that can increase their initial size 200 to 400 times by liquid absorption. An abdominal X-ray was perfomed in anteroposterior supine projection, where a round filling defect at the loop of the right flank was detected; this came to our attention because hydrogel beads are usually radiolucent. The diagnosis was established by abdominal ultrasound where free intraperitoneal fluid was reported with data of small bowel pseudo-obstruction by foreign objects. Conservative treatment was prescribed, finding persistence of increased abdominal perimeter, so an enterotomy was performed for their removal; finding impacted hydrogel beads 30 centimeters from the ileocecal valve. CONCLUSIONS: Hydrogel beads are dangerous for the pediatric population. The evolution of the patient was favorable thanks to the knowledge of the foreign objects ingested. The expectant behavior that had to be executed, stands out because we had no knowledge as to the maximum size of the hydrogel in the gastrointestinal tract.
INTRODUCCIÓN: La obstrucción intestinal por ingesta accidental de cuerpos extraños se presenta muy rara vez en la edad pediátrica debido a que del 80 al 90% de los objetos pueden pasar libremente por el tracto gastrointestinal. CASO CLÍNICO: Se aborda el caso de una paciente de sexo femenino de 1 año 2 meses quien presentó obstrucción intestinal debido a la ingesta de esferas de hidrogel (poliacrilato de sodio). Dichas esferas, que son utilizadas como juguetes didácticos o sensoriales, aumentan de 200 a 400 veces su tamaño inicial mediante la absorción de agua. Se realizó radiografía abdominal en proyección decúbito supino, donde llamó la atención el hallazgo de defecto de llenado redondeado en asa de flanco derecho, ya que las esferas de hidrogel son radiolúcidas. El diagnóstico se estableció mediante ultrasonido abdominal, donde se reportó líquido libre peritoneal con datos de suboclusión por cuerpos extraños a nivel intestinal. Se indicó tratamiento conservador, encontrando persistencia de aumento de perímetro abdominal. Se realizó enterotomía y se encontraron las esferas impactadas a 30 centímetros de la válvula ileocecal. CONCLUSIONES: Las esferas de hidrogel son peligrosas para la población pediátrica. La evolución de la paciente fue favorable debido al conocimiento del objeto extraño ingerido. Sobresale la conducta expectante que se tuvo que desempeñar debido a que se desconocía el crecimiento de las esferas y en qué momento no podrían continuar su paso por el tracto gastrointestinal.
Assuntos
Corpos Estranhos , Obstrução Intestinal , Lactente , Humanos , Criança , Hidrogéis/efeitos adversos , Intestino Delgado , Obstrução Intestinal/etiologia , Obstrução Intestinal/cirurgia , Obstrução Intestinal/diagnóstico , Corpos Estranhos/complicações , Corpos Estranhos/diagnósticoRESUMO
A model (sucrose and gallic acid) solution was concentrated by block freeze concentration (BFC) at three centrifugation cycles, and the solutions were encapsulated in calcium alginate and corn starch calcium alginate hydrogel beads. Static and dynamic tests determined the rheological behavior, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) established thermal and structural properties, and the release kinetics was evaluated under in vitro simulated digestion experiment. The highest efficiency encapsulation value was close to 96%. As the concentrated solution increased in terms of solutes and gallic acid, the solutions were fitted to the Herschel-Bulkley model. Moreover, from the second cycle, the solutions exhibited the highest values of storage modulus (G') and loss modulus (Gâ³), contributing to form a more stable encapsulation. The FTIR and DSC results demonstrated strong interactions between corn starch and alginate, establishing a good compatibility and stability in the bead formation. The kinetic release model under in vitro conditions was fitted to the Korsmeyer-Peppas model, demonstrating the significant stability of the model solutions inside the beads. Therefore, the present study proposes a clear and precise definition for the elaboration of liquid foods obtained by BFC and its incorporation inside an edible material that facilitates the controlled release in specific sites.
RESUMO
Zika virus (ZIKV) is a flavivirus transmitted by infected Aedes genus mosquitoes. An infected person may be asymptomatic or present symptoms such as fever, arthralgia, and in pregnancy it may lead to neurological disorders in the fetus, such as microcephaly. Based on the high dissemination potential of ZIVK and its similar antigen composition to other arboviruses, new approaches for selective virus detection are urgently needed. This work reports the development of an electrochemical immunoassay for detection of anti-ZIKV antibodies, using magnetic beads functionalized with recombinant protein derived from the non-structural protein 1 (ΔNS1-ZIKV) and anti-IgG antibodies labeled with horseradish peroxidase (HRP) enzyme. The magneto-immunoassay uses disposable microfluidic devices for detection of anti-ZIKV in serum samples. A linear response was obtained for a wide concentration range from 0.01 to 9.80 × 105 pg mL-1 (r2 = 0.982), with a limit of detection of 0.48 pg mL-1. The proposed immunoassay proved to be highly efficient for the detection of anti-ZIKV antibodies in serum, offering promising perspectives for the development of fast, simple, and affordable point-of-care diagnosis devices for ZIKV.
Assuntos
Culicidae , Infecção por Zika virus , Zika virus , Animais , Humanos , Infecção por Zika virus/diagnóstico , Imunoensaio , Anticorpos AntiviraisRESUMO
Encapsulation techniques are generally used to preserve the volatile compounds of essential oils. This study aimed to evaluate the influence of process variables on the microencapsulation of marjoram essential oil (MEO) (Origanum majorana L.) by ionic gelation. The effect of sodium alginate concentration (0.5-2 g/100 mL), emulsifier concentration (0.5-2 g/100 mL whey protein isolate (WPI)), and cationic bath concentration (0.05-0.3 mol/L CaCl2) on the emulsions and beads properties were investigated, according to a rotatable central composite design. MEO chemical composition and antimicrobial activity were assessed. Emulsions were characterized for droplet size and viscosity, while the particles were analyzed for encapsulation efficiency, size and circularity, and morphology. High concentrations of alginate and WPI intensified the porous structure of the beads, reducing droplet mean diameter and encapsulation efficiency. High alginate concentrations also increased emulsion viscosity, affecting positively beads' circularity. The intermediate concentration of sodium alginate (1.25 g/100 mL), WPI (1.25 g/100 mL), and CaCl2 (0.175 mol/L) were selected as the most appropriate conditions to produce beads with satisfactory circularity and high encapsulation efficiency.
Assuntos
Óleos Voláteis , Origanum , Proteínas do Soro do Leite/química , Emulsões/química , Alginatos/química , Aditivos Alimentares , Óleos Voláteis/farmacologia , Cloreto de CálcioRESUMO
STUDY QUESTION: Is it possible to remove sperm with damaged DNA from a semen sample? SUMMARY ANSWER: By using immunomagnetic cell sorting that targets the sperm head-bound epididymal sperm-binding protein 1 (ELSPBP1), it was possible to produce an ELSPBP1(-) sperm fraction characterized by consistently lower levels of sperm DNA fragmentation (SDF). WHAT IS KNOWN ALREADY: In bovines, ELSPBP1 is bound to dead spermatozoa. Human ejaculates with high SDF have increased detected levels of sperm ELSPBP1 when compared to ejaculates with low native SDF. STUDY DESIGN, SIZE, DURATION: We recruited 267 patients who were referred to the clinic for conjugal infertility. After applying exclusion criteria, such as fever within 90 days of the study, history of systemic diseases, alterations or surgical interventions to the genital tract and use of cigarette or drugs, a total of 133 patients were included. A total of 52 samples were used for the evaluation of sperm ELSPBP1 levels (Sub-study 1), 41 samples for determination of ELSPBP1 location in human sperm (Sub-study 2), and 40 samples for immunomagnetic cell sorting targeting ELSPBP1, to produce ELSPBP1(-) (without ELSPBP1) and ELSPBP1(+) (with ELSPBP1) fractions (Sub-study 3). Samples were collected between July 2016 and September 2019. PARTICIPANTS/MATERIALS, SETTING, METHODS: In Sub-study 1, sperm ELSPBP1 levels were assessed by western blotting. For Sub-study 2, ELSPBP1 was localized in sperm by immunocytochemistry. Finally, for Sub-study 3, sperm were selected based on incubation of semen samples with antibody-coated magnetic microspheres targeting ELSPBP1. Two fractions were produced (with or without ELSPBP1), and these sub-populations were submitted to an alkaline Comet assay for determination of SDF. MAIN RESULTS AND THE ROLE OF CHANCE: Men with high SDF presented higher sperm ELSPBP1 levels when compared to the control group (low SDF), while no difference between groups was observed in seminal plasma. ELSPBP1 was located in the head region of human sperm. The ELSPBP1(+) fractions presented high and variable levels of SDF, while their paired ELSPBP(-) fractions presented consistently low SDF. LIMITATIONS, REASONS FOR CAUTION: This work did not validate the levels of ELSPBP1 in other functional alterations of sperm, such as acrosome integrity or mitochondrial activity. Moreover, this is still a pre-clinical study, intended to demonstrate proof-of-concept that ELSPBP1 selects sperm with low DNA fragmentation; further investigation is warranted to demonstrate safety for use in ART. Sperm fractions were not assessed for sperm vitality. A clinical trial is still necessary for these findings to be extrapolated to outcomes in ART. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrate that ELSPBP1 is associated with sperm with higher levels of DNA fragmentation. The finding that the sperm membrane can reflect alterations in DNA integrity could give rise to a novel molecular method for sperm preparation prior to use of assisted reproductive procedures. Moreover, the detection of sperm-bound ELSPBP1 could serve as an indirect method for the determination of DNA fragmentation. STUDY FUNDING/COMPETING INTEREST(S): L.B.B. was a recipient of a Ph.D. scholarship from the Sao Paulo Research Foundation-FAPESP (process number 2016/05487-3). R.P.B. is a recipient of a Scientific Productivity scholarship from the Brazilian National Council for Scientific and Technological Development-CNPq (process number 306705/2017-6). The authors have no conflict of interest to disclose. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Infertilidade Masculina , Humanos , Masculino , Animais , Bovinos , Infertilidade Masculina/genética , Triticum/genética , Brasil , Sementes , Espermatozoides/metabolismo , Análise do Sêmen/métodos , DNARESUMO
Zika virus (ZIKV) is a flavivirus transmitted by infected Aedes genus mosquitoes. An infected person may be asymptomatic or present symptoms such as fever, arthralgia, and in pregnancy it may lead to neurological disorders in the fetus, such as microcephaly. Based on the high dissemination potential of ZIVK and its similar antigen composition to other arboviruses, new approaches for selective virus detection are urgently needed. This work reports the development of an electrochemical immunoassay for detection of anti-ZIKV antibodies, using magnetic beads functionalized with recombinant protein derived from the non-structural protein 1 (ΔNS1-ZIKV) and anti-IgG antibodies labeled with horseradish peroxidase (HRP) enzyme. The magneto-immunoassay uses disposable microfluidic devices for detection of anti-ZIKV in serum samples. A linear response was obtained for a wide concentration range from 0.01 to 9.80 × 105 pg mL−1 (r2 = 0.982), with a limit of detection of 0.48 pg mL−1. The proposed immunoassay proved to be highly efficient for the detection of anti-ZIKV antibodies in serum, offering promising perspectives for the development of fast, simple, and affordable point-of-care diagnosis devices for ZIKV.
RESUMO
Resumen Introducción: La obstrucción intestinal por ingesta accidental de cuerpos extraños se presenta muy rara vez en la edad pediátrica debido a que del 80 al 90% de los objetos pueden pasar libremente por el tracto gastrointestinal. Caso clínico: Se aborda el caso de una paciente de sexo femenino de 1 año 2 meses quien presentó obstrucción intestinal debido a la ingesta de esferas de hidrogel (poliacrilato de sodio). Dichas esferas, que son utilizadas como juguetes didácticos o sensoriales, aumentan de 200 a 400 veces su tamaño inicial mediante la absorción de agua. Se realizó radiografía abdominal en proyección decúbito supino, donde llamó la atención el hallazgo de defecto de llenado redondeado en asa de flanco derecho, ya que las esferas de hidrogel son radiolúcidas. El diagnóstico se estableció mediante ultrasonido abdominal, donde se reportó líquido libre peritoneal con datos de suboclusión por cuerpos extraños a nivel intestinal. Se indicó tratamiento conservador, encontrando persistencia de aumento de perímetro abdominal. Se realizó enterotomía y se encontraron las esferas impactadas a 30 centímetros de la válvula ileocecal. Conclusiones: Las esferas de hidrogel son peligrosas para la población pediátrica. La evolución de la paciente fue favorable debido al conocimiento del objeto extraño ingerido. Sobresale la conducta expectante que se tuvo que desempeñar debido a que se desconocía el crecimiento de las esferas y en qué momento no podrían continuar su paso por el tracto gastrointestinal.
Abstract Background: Bowel obstruction due to accidental ingestion of foreign objects occurs rarely in children because 80 to 90% of the objects can pass freely through the gastrointestinal tract. Case report: We report a case of a 14-month-old infant who presented bowel obstruction caused by the ingestion of hydrogel beads (sodium polyacrylate). Hydrogel beads are used as sensory and didactic toys that can increase their initial size 200 to 400 times by liquid absorption. An abdominal X-ray was perfomed in anteroposterior supine projection, where a round filling defect at the loop of the right flank was detected; this came to our attention because hydrogel beads are usually radiolucent. The diagnosis was established by abdominal ultrasound where free intraperitoneal fluid was reported with data of small bowel pseudo-obstruction by foreign objects. Conservative treatment was prescribed, finding persistence of increased abdominal perimeter, so an enterotomy was performed for their removal; finding impacted hydrogel beads 30 centimeters from the ileocecal valve. Conclusions: Hydrogel beads are dangerous for the pediatric population. The evolution of the patient was favorable thanks to the knowledge of the foreign objects ingested. The expectant behavior that had to be executed, stands out because we had no knowledge as to the maximum size of the hydrogel in the gastrointestinal tract.
RESUMO
We have presented the case of a symptomatic, primarily infected aortic pseudoaneurysm treated with endovascular stent graft exclusion and adjunctive use of a long-acting biocomposite antibiotic material injected directly into the pseudoaneurysm sac. We have described preparation of the biocomposite antibiotic material and the catheter-directed delivery technique in detail. Although the use of long-acting antibiotic materials such as antibiotic beads has been well described when performing open surgery in an infected field, the application of these materials in endovascular procedures has been less certain. The techniques we have described have the potential to promote field sterilization in a minimally invasive manner for patients with aortic infections who could be poor candidates for open surgery.
RESUMO
Immobilization of microorganisms in biodegradable polymeric matrices constitutes a promising technology for plant growth promoting to overcome the challenging conditions of the rhizosphere. Previously, we demonstrated that beads prepared from blends of chitosan/starch of analytical grades ionically cross-linked are useful carriers for Azospirillum brasilense and Pseudomonas fluorescens. The aims of this work were to study A. brasilense Az39 and P. fluorescens ZME4 immobilization in industrial quality beads produced with a blend of chitosan/starch, to assess bacterial survival during long-term storage and biofilm distribution in the beads. We also proposed to analyze the consortia root colonization and its performance as plant growth-promoting bioinoculants compared to liquid counterpart. Our results revealed that A. brasilense Az39 and P. fluorescens ZME4 can coexist in industrial grade chitosan/starch beads, and this mixed immobilization benefits the survival rates of both species, even for more than a year under shelf storage. Confocal laser scanning microscopy with fluorescent dyed strains showed that both species remain mainly in different locations inside and over the beads. Additionally, maize seed treatment with beads-loaded bacteria resulted in growth promotion of roots in a similar manner than traditional liquid-based inoculation. The evidence collected here demonstrate that low-cost chitosan/starch beads are a suitable carrier for bacteria consortia and could be a reliable alternative to liquid inoculation in agronomic practices with additional benefits for industrial management. KEY POINTS: ⢠Mixed immobilization increases bacterial survival in chitosan/starch industrial beads ⢠Beads increase competence of bacteria in rhizosphere of maize ⢠Inoculation mediated by beads promotes plant growth of maize.
Assuntos
Azospirillum brasilense , Quitosana , Amido , Desenvolvimento Vegetal , Rizosfera , Raízes de PlantasRESUMO
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) participates in several anabolic and catabolic pathways, being essential in numerous biochemical reactions involving energy release. Most of these reactions require a high amount of NADPH, which can be expensive from an industry point of view. Thus, biotechnology industries developed a great interest in NADPH production. Currently, there are different ways to obtain NADPH in situ, however, the most common is by enzymatic reactions, known as generator systems. Although this approach can be beneficial in terms of cost, the major drawback is the impossibility of reusing the enzyme. To overcome this, enzyme immobilization is a proven alternative. Herein, we report the use of glucose-6-phosphate dehydrogenase immobilized onto magnetic beads (G6PDH-Mb) through glutaraldehyde coupling to produce high amounts of NADPH. The G6PDH-Mbs were kinetically characterized showing a sigmoidal curve. Besides, the stability was evaluated, and their reuse was demonstrated for a period superior to 40 days. The G6PDH-Mb was used to in situ production of the NADPH metabolism experiments, using human liver microsome solutions and either albendazole or fiscalin B as model targets. The production of in vitro metabolites from albendazole and fiscalin B was evaluated by comparing the use of NADPH generated in situ with those obtained by commercial NADPH. Moreover, the activity of the G6PDH-Mb was monitored after using it for five consecutive albendazole metabolism reactions, with only a minor decrease in the enzyme activity (3.58 ± 1.67%) after the fifth time of use. The higher concentration obtained when using the designed G6PDH-Mb generator system demonstrated proof of the concept and its applicability.
Assuntos
Albendazol , Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase/metabolismo , Humanos , Fenômenos Magnéticos , NADP/metabolismoRESUMO
Rapid, straightforward, and massive diagnosis of coronavirus disease 2019 (COVID-19) is one of the more important measures to mitigate the current pandemics. This work reports on an immunosensor to rapidly detect the spike protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The immunosensing device entraps the spike protein linked to angiotensin-converting enzyme host receptor (ACE2) protein in a sandwich between carboxylated magnetic beads functionalized with an anti-spike antibody and an anti-ACE2 antibody, further labeled with streptavidin (poly)horseradish peroxidase (HRP) reporter enzyme. The particles were confined at the surface of screen-printed gold electrodes, whose signal resulting from the interaction of the enzyme with a mediator was recorded in a portable potentiostat. The immunosensor showed a sensitivity of 0.83 µA∗mL/µg and a limit of detection of 22.5 ng/mL of spike protein, with high reproducibility. As a proof-of-concept, it detected commercial spike protein-supplemented buffer solutions, pseudovirions, isolated viral particles and ten nasopharyngeal swab samples from infected patients compared to samples from three healthy individuals paving the way to detect the virus closer to the patient.