Your browser doesn't support javascript.
loading
Modification of pectin/starch-based beads with additives to improve Bacillus subtilis encapsulation for agricultural applications.
Lopes, Marina Momesso; Oliveira-Paiva, Christiane Abreu de; Farinas, Cristiane Sanchez.
Afiliação
  • Lopes MM; National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
  • Oliveira-Paiva CA; Embrapa Corn and Sorghum, 35701-970 Sete Lagoas, MG, Brazil.
  • Farinas CS; National Nanotechnology Laboratory for Agribusiness (LNNA), Embrapa Instrumentation, 13560-970 São Carlos, SP, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905 Sao Carlos, SP, Brazil. Electronic address: cristiane.farinas@embrapa.br.
Int J Biol Macromol ; 246: 125646, 2023 Aug 15.
Article em En | MEDLINE | ID: mdl-37394222
The use of Bacillus as biofertilizer is a sustainable strategy to increase agricultural productivity, but it still requires the development of formulations to protect cells from stressful conditions. Ionotropic gelation using a pectin/starch matrix is a promising encapsulation strategy to achieve this goal. By incorporating additives such as montmorillonite (MMT), attapulgite (ATP), polyethylene glycol (PEG), and carboxymethyl cellulose (CMC), the properties of these encapsulated products could be further improved. In this study, we investigated the influence of these additives on the properties of pectin/starch-based beads for the encapsulation of Bacillus subtilis. FTIR analysis indicated pectin and Ca2+ ions interactions, while the XRD showed good dispersion of clays in the materials. SEM and X-ray microtomography revealed differences in the morphology of the beads due to the use of the additives. The viabilities at the encapsulation were higher than 1010 CFU g-1 for all formulations, with differences in the release profiles. In terms of cell protection, the pectin/starch, pectin/starch-MMT and pectin/starch-CMC formulations showed the highest cell viability after exposure to fungicide, while the pectin/starch-ATP beads showed the best performance after UV exposure. Moreover, all formulations maintained more than 109 CFU g-1 after six months of storage, which meets values required for microbial inoculants.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bacillus subtilis / Pectinas Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bacillus subtilis / Pectinas Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda