Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38425495

RESUMO

Swarming motility is a type of movement used by pathogenic flagellated bacteria as virulence factor to colonize surfaces and cause damage to the host. Vibrio parahaemolyticus is a pathogenic flagellated bacterium that increases its virulence by switching from swimmer to swarming cells. The hosts of pathogenic V. parahaemolyticus include farmed shrimp. Therefore, methods to detect and quantify this movement are important to control shrimp diseases caused by pathogenic V. parahaemolyticus strains. We developed an optimized swarming motility assay by identifying the most optimal type of agar, and drying time of the culture medium, agar concentration and volume of the bacterial culture to achieve the fastest swarming motility during the migration of V. parahaemolyticus on Petri dishes during a 24-hour incubation period. The method includes data analysis that could be used as a tool to identify potential anti-virulence products by comparing the slopes of the linearized diameters of the swarming halos of bacteria treated with the products, as they migrate on Petri dishes over a 24-hour incubation period. Here we report:•A simple method for detection and quantification of swarming motility halos of V. parahaemolyticus bacteria.•A method that could be used as a tool to identify potential anti-virulence products.

2.
Front Microbiol ; 14: 1185368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440880

RESUMO

Xanthomonas vesicatoria is one of the causal agents of bacterial spot, a disease that seriously affects the production of tomato (Solanum lycopersicum) and pepper (Capsicum annum) worldwide. In Argentina, bacterial spot is found in all tomato producing areas, with X. vesicatoria being one of the main species detected in the fields. Previously, we isolated three X. vesicatoria strains BNM 208, BNM 214, and BNM 216 from tomato plants with bacterial spot, and found they differed in their ability to form biofilm and in their degree of aggressiveness. Here, the likely causes of those differences were explored through genotypic and phenotypic studies. The genomes of the three strains were sequenced and assembled, and then compared with each other and also with 12 other publicly available X. vesicatoria genomes. Phenotypic characteristics (mainly linked to biofilm formation and virulence) were studied in vitro. Our results show that the differences observed earlier between BNM 208, BNM 214, and BNM 216 may be related to the structural characteristics of the xanthan gum produced by each strain, their repertoire of type III effectors (T3Es), the presence of certain genes associated with c-di-GMP metabolism and type IV pili (T4P). These findings on the pathogenicity mechanisms of X. vesicatoria could be useful for developing bacterial spot control strategies aimed at interfering with the infection processes.

3.
ACS Appl Bio Mater ; 5(10): 4903-4912, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36162102

RESUMO

SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.


Assuntos
Biofilmes , Polímeros , Polímeros/farmacologia , Aderência Bacteriana , Propriedades de Superfície , Membrana Celular
4.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889267

RESUMO

This study aimed to evaluate the antibacterial activity in vitro of Salpianthus macrodontus and Azadirachta indica extracts against potentially pathogenic bacteria for Pacific white shrimp. Furthermore, the extracts with higher inhibitory activity were analyzed to identify compounds responsible for bacterial inhibition and evaluate their effect on motility and biofilm formation. S. macrodontus and A. indica extracts were prepared using methanol, acetone, and hexane by ultrasound. The minimum inhibitory concentration (MIC) of the extracts was determined against Vibrio parahaemolyticus, V. harveyi, Photobacterium damselae and P. leiognathi. The polyphenol profile of those extracts showing the highest bacterial inhibition were determined. Besides, the bacterial swimming and swarming motility and biofilm formation were determined. The highest inhibitory activity against the four pathogens was found with the acetonic extract of S. macrodontus leaf (MIC of 50 mg/mL for Vibrio spp. and 25 mg/mL for Photobacterium spp.) and the methanol extract of S. macrodontus flower (MIC of 50 mg/mL for all pathogens tested). Both extracts affected the swarming and swimming motility and the biofilm formation of the tested bacteria. The main phenolic compounds related to Vibrio bacteria inhibition were naringin, vanillic acid, and rosmarinic acid, whilst hesperidin, kaempferol pentosyl-rutinoside, and rhamnetin were related to Photobacterium bacteria inhibition.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Antibacterianos/farmacologia , Metanol , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
5.
Microorganisms ; 10(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35336138

RESUMO

Bacterial motility is a widespread characteristic that can provide several advantages for the cell, allowing it to move towards more favorable conditions and enabling host-associated processes such as colonization. There are different bacterial motility types, and their expression is highly regulated by the environmental conditions. Because of this, methods for studying motility under realistic experimental conditions are required. A wide variety of approaches have been developed to study bacterial motility. Here, we present the most common techniques and recent advances and discuss their strengths as well as their limitations. We classify them as macroscopic or microscopic and highlight the advantages of three-dimensional imaging in microscopic approaches. Lastly, we discuss methods suited for studying motility in bacterial-host interactions, including the use of the zebrafish model.

6.
Curr Protein Pept Sci ; 22(11): 807-821, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34547997

RESUMO

BACKGROUND: Salmonella enterica is the etiological agent of salmonellosis, with a high infection rate worldwide in Mexico, ST213 genotype of S. enterica ser. Typhimurium is displacing the ancestral ST19 genotype. Bacterial cytoskeleton protein complex MreBCD plays an important role in S. enterica pathogenesis, but underlying mechanisms are unknown. RESULTS: In this study, 106 interactions among MreBCD and 15 proteins from S. Typhimurium Pathogenicity Islands 1 (SP-I) and 2 (SP-2) involved in both bacterial virulence and stress response were predicted in ST213 and ST19 genotypes, of which 12 interactions were confirmed in vitro. In addition, gene cluster analysis in 100 S. Typhimurium genomes was performed for these genes. RESULTS AND CONCLUSION: The in silico and in vitro results showed a novel MreBCD interactome involved in regulating pathogenesis and stress response through interactions with virulence factors located at SPI-1 and SPI-2. Furthermore, both pseudogene presence and sequence variations in four tested proteins between genotypes resulted in differential interaction patterns involved in Salmonella motility and survival in eukaryotic cells, which could explain the replacement of ST19 by ST213 in Mexico.


Assuntos
Salmonella typhimurium
7.
R Soc Open Sci ; 5(5): 171854, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892378

RESUMO

Bacterial flagellar motility, an important virulence factor, is energized by a rotary motor localized within the flagellar basal body. The rotor module consists of a large framework (the C-ring), composed of the FliG, FliM and FliN proteins. FliN and FliM contacts the FliG torque ring to control the direction of flagellar rotation. We report that structure-based models constrained only by residue coevolution can recover the binding interface of atomic X-ray dimer complexes with remarkable accuracy (approx. 1 Å RMSD). We propose a model for FliM-FliN heterodimerization, which agrees accurately with homologous interfaces as well as in situ cross-linking experiments, and hence supports a proposed architecture for the lower portion of the C-ring. Furthermore, this approach allowed the identification of two discrete and interchangeable homodimerization interfaces between FliM middle domains that agree with experimental measurements and might be associated with C-ring directional switching dynamics triggered upon binding of CheY signal protein. Our findings provide structural details of complex formation at the C-ring that have been difficult to obtain with previous methodologies and clarify the architectural principle that underpins the ultra-sensitive allostery exhibited by this ring assembly that controls the clockwise or counterclockwise rotation of flagella.

8.
Can J Microbiol ; 61(3): 183-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25639364

RESUMO

In this study, we show the induction of lateral flagella by the action of the sodium channel blocker phenamil, in the marine bacterium Vibrio shilonii, a coral pathogen that causes bleaching. We analyzed the growth and morphology of cells treated with phenamil. A time course analysis showed that after 30 min of exposure to the sodium channel blocker, lateral flagella were present and could be detected by electron microscopy. Detection of the mRNA of the master regulator (lafK) and lateral flagellin (lafA) by RT-PCR confirmed the expression of lateral flagellar genes. We show the simultaneous isolation of polar and, for the first time, lateral flagellar hook-basal bodies. This allowed us to compare the dimensions and morphological characteristics of the 2 structures.


Assuntos
Flagelos/metabolismo , Sódio/metabolismo , Vibrio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Flagelos/genética , Flagelina/genética , Flagelina/metabolismo , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA