Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Food Chem ; 460(Pt 2): 140569, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39083967

RESUMO

The objective of this work was to prepare and characterize liposomes containing co-encapsulated ascorbic acid (AA) and ascorbyl palmitate (AP), as well as to evaluate their stability, cytotoxicity, antioxidant, and antimicrobial activity. Through the pre-formulation studies, it was possible to improve the formulation, as leaving it more stable and with a greater antioxidant activity, resulting in a formulation designated LIP-AAP, with 161 nm vesicle size, 0.215 polydispersity index, -31.7 mV zeta potential, and pH of 3.34. Encapsulation efficiencies were 37% for AA and 79% for AP, and the content was 1 mg/mL for each compound. The optimized liposomes demonstrated stability under refrigeration for 60 days, significant antioxidant activity (31.4 µMol of TE/mL), and non-toxicity, but no antimicrobial effects against bacteria and fungi were observed. These findings confirm that the co-encapsulated liposomes are potent, stable antioxidants that maintain their physical and chemical properties under optimal storage conditions.


Assuntos
Anti-Infecciosos , Antioxidantes , Ácido Ascórbico , Estabilidade de Medicamentos , Lipossomos , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Ácido Ascórbico/análogos & derivados , Lipossomos/química , Antioxidantes/química , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Humanos , Bactérias/efeitos dos fármacos , Tamanho da Partícula , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Composição de Medicamentos
2.
Polymers (Basel) ; 16(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000728

RESUMO

Synthetic plastic polymers are causing considerable emerging ecological hazards. Starch-based biofilms are a potential alternative. However, depending on the natural source and extraction method, the properties of starch can vary, affecting the physicochemical characteristics of the corresponding casted films generated from it. These differences might entail morphological changes at the nanoscale, which can be explored by inspecting their surfaces. Potato (Solanum tuberosum) is a well-known tuber containing a high amount of starch, but the properties of the biofilms extracted from it are dependent on the specific variety. In this research, four Ecuadorian potato varieties (Leona Blanca, Única, Chola, and Santa Rosa) were analyzed and blended with different glycerol concentrations. The amylose content of each extracted starch was estimated, and biofilms obtained were characterized at both macroscopic and nanoscopic levels. Macroscopic tests were conducted to evaluate their elastic properties, visible optical absorption, water vapor permeability, moisture content, and solubility. It was observed that as the glycerol percentage increased, both moisture content and soluble matter increased, while tensile strength decreased, especially in the case of the Chola variety. These results were correlated to a surface analysis using atomic force microscopy, providing a possible explanation based on the topography and phase contrast observations made at the nanoscale.

3.
Heliyon ; 10(10): e30623, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38770291

RESUMO

The Hertz-Sneddon elastic indentation model is widely adopted in the biomechanical investigation of living cells and other soft materials using atomic force microscopy despite the explicit viscoelastic nature of these materials. In this work, we demonstrate that an exact analytical viscoelastic force model for power-law materials, can be interpreted as a time-dependent Hertz-Sneddon-like model. Characterizing fibroblasts (L929) and osteoblasts (OFCOLII) demonstrates the model's accuracy. Our results show that the difference between Young's modulus EY obtained by fitting force curves with the Hertz-Sneddon model and the effective Young's modulus derived from the viscoelastic force model is less than 3%, even when cells are probed at large forces where nonlinear deformation effects become significant. We also propose a measurement protocol that involves probing samples at different indentation speeds and forces, enabling the construction of the average viscoelastic relaxation function of samples by conveniently fitting the force curves with the Hertz-Sneddon model.

4.
Discov Nano ; 19(1): 64, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594446

RESUMO

Modern imaging strategies are paramount to studying living systems such as cells, bacteria, and fungi and their response to pathogens, toxicants, and nanomaterials (NMs) as modulated by exposure and environmental factors. The need to understand the processes and mechanisms of damage, healing, and cell survivability of living systems continues to motivate the development of alternative imaging strategies. Of particular interest is the use of label-free techniques (microscopy procedures that do not require sample staining) that minimize interference of biological processes by foreign marking substances and reduce intense light exposure and potential photo-toxicity effects. This review focuses on the synergic capabilities of atomic force microscopy (AFM) as a well-developed and robust imaging strategy with demonstrated applications to unravel intimate details in biomedical applications, with the label-free, fast, and enduring Holotomographic Microscopy (HTM) strategy. HTM is a technique that combines holography and tomography using a low intensity continuous illumination laser to investigate (quantitatively and non-invasively) cells, microorganisms, and thin tissue by generating three-dimensional (3D) images and monitoring in real-time inner morphological changes. We first review the operating principles that form the basis for the complementary details provided by these techniques regarding the surface and internal information provided by HTM and AFM, which are essential and complimentary for the development of several biomedical areas studying the interaction mechanisms of NMs with living organisms. First, AFM can provide superb resolution on surface morphology and biomechanical characterization. Second, the quantitative phase capabilities of HTM enable superb modeling and quantification of the volume, surface area, protein content, and mass density of the main components of cells and microorganisms, including the morphology of cells in microbiological systems. These capabilities result from directly quantifying refractive index changes without requiring fluorescent markers or chemicals. As such, HTM is ideal for long-term monitoring of living organisms in conditions close to their natural settings. We present a case-based review of the principal uses of both techniques and their essential contributions to nanomedicine and nanotoxicology (study of the harmful effects of NMs in living organisms), emphasizing cancer and infectious disease control. The synergic impact of the sequential use of these complementary strategies provides a clear drive for adopting these techniques as interdependent fundamental tools.

5.
Exp Eye Res ; 240: 109791, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253307

RESUMO

The cornea is a fundamental ocular tissue for the sense of sight. Thanks to it, the refraction of two-thirds of light manages to participate in the visual process and protect against mechanical damage. Because it is transparent, avascular, and innervated, the cornea comprises five main layers: Epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. Each layer plays a key role in the functionality and maintenance of ocular tissue, providing unique ultrastructural and biomechanical properties. Bullous Keratopathy (BK) is an endothelial dysfunction that leads to corneal edema, loss of visual acuity, epithelial blisters, and severe pain, among other symptoms. The corneal layers are subject to changes in their biophysical properties promoted by Keratopathy. In this context, the Atomic Force Microscopy (AFM) technique in air was used to investigate the anterior epithelial surface and the posterior endothelial surface, healthy and with BK, using a triangular silicone tip with a nominal spring constant of 0.4 N/m. Six human corneas (n = 6) samples were used for each analyzed group. Roughness data, calculated by third-order polynomial adjustment, adhesion, and Young's modulus, were obtained to serve as a comparison and identification of morphological and biomechanical changes possibly associated with the pathology, such as craters and in the epithelial layer and exposure of a fibrotic layer due to loss of the endothelial cell wall. Endothelial cell membrane area and volume data were calculated, obtaining a relevant comparison between the control and patient. Such results may provide new data on the physical properties of the ocular tissue to understand the physiology of the cornea when it has pathology.


Assuntos
Doenças da Córnea , Edema da Córnea , Humanos , Endotélio Corneano/metabolismo , Lâmina Limitante Posterior/metabolismo , Edema da Córnea/metabolismo , Córnea/patologia , Doenças da Córnea/patologia
6.
Microscopy (Oxf) ; 73(1): 55-65, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37540558

RESUMO

We conducted a comprehensive analysis of the surface microtexture of kefir biofilms grown on Theobroma grandiflorum Shum (cupuaçu) juice using atomic force microscopy. Our goal was to investigate the unique monofractal and multifractal spatial patterns of these biofilms to complement the existing limited literature. The biofilms were prepared dispersing four different concentrations of kefir grains in cupuaçu juice. Our morphological analysis showed that the surface of the obtained biofilms is essentially formed by the presence of cupuaçu fibers and microorganisms like lactobacilli and yeast. The topographic height-based parameter analysis reveals that there is a dependence between surface roughness and the concentration of kefir grains used. The strongly anisotropic well-centralized topographical height distribution of the biofilms also exhibited a quasi-symmetrical and platykurtic pattern. The biofilms exhibit comparable levels of spatial complexity, surface percolation and surface homogeneity, which can be attributed to their similar topographic uniformity. This aspect was further supported by the presence of similar multifractality in the biofilms, suggesting that despite their varying topographic roughness, their vertical growth dynamics follow a similar pattern. Our findings demonstrate that the surface roughness of kefir biofilms cultivated on cupuaçu juice is influenced by the concentration of kefir grains in the precursor solution. However, this dependence follows a consistent pattern across different concentrations. Graphical Abstract.


Assuntos
Kefir , Biofilmes , Lactobacillus , Saccharomyces cerevisiae
7.
Braz. dent. sci ; 27(1): 1-11, 2024. ilus
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1551400

RESUMO

The internal topography of the root canal is complex, especially for the permanent molar's mesial root. In response to such issues, improved irrigation techniques have been created, which use laser pulses to agitate fluids and improve microbial deposit removal. Objective: To assess the effectiveness of the Er,Cr:YSGG laser with a wavelength of 2,780 nm via photon-induced photoacoustic streaming (PIPS) protocol which agitated of 2% chlorohexidine (CHX) in removing mature Enterococcus faecalis (E. faecalis) biofilm in root canal systems of lower molars. Material and Methods: The mesial roots of lower first and second molars were separated and inoculated with E. faecalis bacterial suspension for 30 days. The roots were irrigated with CHX, some of them were agitated with a passive ultrasonic device (PUI), while the other roots were agitated by an Er,Cr:YSGG laser in PIPS at 60 µs/pulse, 5 Hz, (0.25, 0.5, 0.75, and 1) W. An atomic force microscope (AFM) was used as a new method to get the results in the isthmus area; the obtained results from each group were compared with each other. Results: Based on the AFM and SEM analyses, laser and ultrasonic activation groups showed higher antimicrobial efficacy than the conventional syringe irrigation group (P<0.05). Conclusion: Based on the investigation's findings, the activation of 2% CHX solution by Er,Cr:YSGG laser in PIPS and PUI offers better mature bacterial biofilm removal in the mesial root of lower human molars than the same irrigant with the SI technique (AU)


A topografia interna do canal radicular é complexa, especialmente para a raiz mesial do molar permanente. Em resposta a esses problemas, foram criadas técnicas aprimoradas de irrigação, que utilizam pulsos de laser para agitar fluidos e melhorar a remoção de depósitos microbianos. Objetivo: Avaliar a eficácia do laser Er,Cr:YSGG com comprimento de onda de 2.780 nm via protocolo de streaming fotoacústico induzido por fótons (PIPS) que agitou clorohexidina a 2% (CHX) na remoção de Enterococcus faecalis maduro (E. faecalis) biofilme em sistemas de canais radiculares de molares inferiores. Material e Métodos: As raízes mesiais de 28 primeiros e segundos molares inferiores foram separadas e inoculadas com suspensão bacteriana de E. faecalis por 30 dias. As raízes foram irrigadas com CHX, sendo algumas delas agitadas com aparelho ultrassônico passivo (PUI), enquanto as demais raízes foram agitadas com laser Er,Cr:YSGG em PIPS a 60 µs/pulso, 5 Hz (0,25, 0,5, 0,75 e 1) W. Um microscópio de força atômica (AFM) foi utilizado como um novo método para obter os resultados na área do istmo; os resultados obtidos de cada grupo foram comparados entre si. Resultados: Com base nas análises de AFM e SEM, os grupos de ativação por laser e ultrassom apresentaram maior eficácia antimicrobiana do que o grupo de irrigação com seringa convencional (P<0.05). Conclusão: Com base nos achados da investigação, a ativação da solução de CHX a 2% pelo laser Er,Cr:YSGG em PIPS a (60 µs/pulso, 5 Hz, 0,75 W) oferece melhor remoção de biofilme (AU)


Assuntos
Enterococcus faecalis , Placa Dentária
9.
Microbiol Spectr ; 11(6): e0265723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819075

RESUMO

IMPORTANCE: In this work, we characterized the composition, structure, and functional potential for biofilm formation of Exiguobacterium strains isolated from the Salar de Huasco in Chile in the presence of arsenic, an abundant metalloid in the Salar that exists in different oxidation states. Our results showed that the Exiguobacterium strains tested exhibit a significant capacity to form biofilms when exposed to arsenic, which would contribute to their resistance to the metalloid. The results highlight the importance of biofilm formation and the presence of specific resistance mechanisms in the ability of microorganisms to survive and thrive under adverse conditions.


Assuntos
Arsênio , Arsênio/toxicidade , Exiguobacterium , Biofilmes , Oxirredução , Chile
10.
Viruses ; 15(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37896823

RESUMO

Cowpea chlorotic mottle virus (CCMV) and brome mosaic virus (BMV) are naked plant viruses with similar characteristics; both form a T = 3 icosahedral protein capsid and are members of the bromoviridae family. It is well known that these viruses completely disassemble and liberate their genome at a pH around 7.2 and 1 M ionic strength. However, the 1 M ionic strength condition is not present inside cells, so an important question is how these viruses deliver their genome inside cells for their viral replication. There are some studies reporting the swelling of the CCMV virus using different techniques. For example, it is reported that at a pH~7.2 and low ionic strength, the swelling observed is about 10% of the initial diameter of the virus. Furthermore, different regions within the cell are known to have different pH levels and ionic strengths. In this work, we performed several experiments at low ionic strengths of 0.1, 0.2, and 0.3 and systematically increased the pH in 0.2 increments from 4.6 to 7.4. To determine the change in virus size at the different pHs and ionic strengths, we first used dynamic light scattering (DLS). Most of the experiments agree with a 10% capsid swelling under the conditions reported in previous works, but surprisingly, we found that at some particular conditions, the virus capsid swelling could be as big as 20 to 35% of the original size. These measurements were corroborated by atomic force microscopy (AFM) and transmission electron microscopy (TEM) around the conditions where the big swelling was determined by DLS. Therefore, this big swelling could be an easier mechanism that viruses use inside the cell to deliver their genome to the cell machinery for viral replication.


Assuntos
Bromovirus , Vírus de Plantas , Bromovirus/genética , Proteínas do Capsídeo/metabolismo , Capsídeo , Concentração Osmolar
11.
Antibiotics (Basel) ; 12(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37370313

RESUMO

Few studies have been able to elucidate the correlation of factors determining the strength of interaction between bacterial cells and substrate at the molecular level. The aim was to answer the following question: What biophysical factors should be considered when analyzing the bacterial adhesion strength on titanium surfaces and its alloys for implants quantified by atomic force microscopy? This review followed PRISMA. The search strategy was applied in four databases. The selection process was carried out in two stages. The risk of bias was analyzed. One thousand four hundred sixty-three articles were found. After removing the duplicates, 1126 were screened by title and abstract, of which 57 were selected for full reading and 5 were included; 3 had a low risk of bias and 2 moderated risks of bias. (1) The current literature shows the preference of bacteria to adhere to surfaces of the same hydrophilicity. However, this fact was contradicted by this systematic review, which demonstrated that hydrophobic bacteria developed hydrogen bonds and adhered to hydrophilic surfaces; (2) the application of surface treatments that induce the reduction of areas favorable for bacterial adhesion interfere more in the formation of biofilm than surface roughness; and (3) bacterial colonization should be evaluated in time-dependent studies as they develop adaptation mechanisms, related to time, which are obscure in this review.

12.
J Dent Res ; 102(8): 957-964, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37203151

RESUMO

The adhesion of initial colonizers such as Streptococcus mutans to collagen is critical for dentinal and root caries progression. One of the most described pathological and aging-associated changes in collagen-including dentinal collagen-is the generation of advanced glycation end-products (AGEs) such as methylglyoxal (MGO)-derived AGEs. Despite previous reports suggesting that AGEs alter bacterial adhesion to collagen, the biophysics driving oral streptococcal attachment to MGO-modified collagen remains largely understudied. Thus, the aim of this work was to unravel the dynamics of the initial adhesion of S. mutans to type I collagen in the presence and absence of MGO-derived AGEs by employing bacterial cell force spectroscopy with atomic force microscopy (AFM). Type I collagen gels were treated with 10 mM MGO to induce AGE formation, which was characterized with microscopy and enzyme-linked immunosorbent assay. Subsequently, AFM cantilevers were functionalized with living S. mutans UA 159 or Streptococcus sanguinis SK 36 cells and probed against collagen surfaces to obtain force curves displaying bacterial attachment in real time, from which the adhesion force, number of events, Poisson analysis, and contour and rupture lengths for each individual detachment event were computed. Furthermore, in silico computer simulation docking studies between the relevant S. mutans UA 159 collagen-binding protein SpaP and collagen were computed, in the presence and absence of MGO. Overall, results showed that MGO modification increased both the number and adhesion force of single-unbinding events between S. mutans and collagen, without altering the contour or rupture lengths. Both experimental and in silico simulations suggest that this effect is due to increased specific and nonspecific forces and interactions between S. mutans UA 159 and MGO-modified collagen substrates. In summary, these results suggest that collagen alterations due to aging and glycation may play a role in early bacterial adherence to oral tissues, associated with conditions such as aging or chronic hyperglycemia, among others.


Assuntos
Colágeno Tipo I , Óxido de Magnésio , Colágeno Tipo I/metabolismo , Simulação por Computador , Óxido de Magnésio/metabolismo , Streptococcus , Streptococcus mutans , Aderência Bacteriana , Colágeno/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Biofilmes , Microscopia de Força Atômica/métodos
13.
Microsc Res Tech ; 86(10): 1353-1362, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37070727

RESUMO

Melanoma is originated from the malignant transformation of the melanocytes and is characterized by a high rate of invasion, the more serious stage compromising deeper layers of the skin and eventually leading to the metastasis. A high mortality due to melanoma lesion persists because most of melanoma lesions are detected in advanced stages, which decreases the chances of survival. The identification of the principal mechanics implicated in the development and progression of melanoma is essential to devise new early diagnosis strategies. Cell mechanics is related with a lot of cellular functions and processes, for instance motility, differentiation, migration and invasion. In particular, the elastic modulus (Young's modulus) is a very explored parameter to describe the cell mechanical properties; most cancer cells reported in the literature smaller elasticity modulus. In this work, we show that the elastic modulus of melanoma cells lacking galectin-3 is significantly lower than those of melanoma cells expressing galectin-3. More interestingly, the gradient of elastic modulus in cells from the nuclear region towards the cell periphery is more pronounced in shGal3 cells. RESEARCH HIGHLIGHTS: AFM imaging and force spectroscopy were used to investigate the morphology and elasticity properties of healthy HaCaT cells and melanoma cells WM1366, with (shSCR) and without (shGal3) expression of galectin-3. It is shown the effect of galectin-3 protein on the elastic properties of cells: the cells without expression of galectin-3 presents lower elastic modulus. By the results, we suggest here that galectin-3 could be used as an effective biomarker of malignancy in both melanoma diagnostic and prognosis.


Assuntos
Galectina 3 , Melanoma , Humanos , Elasticidade , Módulo de Elasticidade/fisiologia , Diferenciação Celular , Microscopia de Força Atômica/métodos
14.
Life (Basel) ; 13(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36836813

RESUMO

The aim of this study was to evaluate the influence of surface topography of gutta-percha (GP) cones and plasticized disks of GP on the initial adhesion of Enterococcus faecalis (E. faecalis). The GP cones (Tanari and Dentsply brands) were cut 3 mm from the apical portion and fixed on a glass slide. To make the disks, the cones were thermoplasticized in standardized molds. The specimens were divided into groups according to the shape of the GP and the presence or absence of the bacteria. For contamination, the strain of E. faecalis (ATCC 29212) was used. The surface topography was analyzed using an atomic force microscope (AFM). The surface, roughness, and waviness parameters were evaluated by the Kruskal-Wallis and Dunn test. The comparison between disks and cones showed significant differences, where the cones were rougher, with a higher value attributed to the Dentsply cone (DC group). The same was observed for the waviness. After contamination, there was greater bacterial accumulation in cones, especially in their valleys, but both the surface and the topography became more homogeneous and smoother, with no differences between disks and cones of both brands. The topographic surface of the GP, at the micro and nanoscale, influences the initial adhesion of E. faecalis, with a greater tendency for contamination in regions associated with the presence of roughness and waviness. In this context, plasticization of GP is indicated, as it reduces surface irregularities compared to cones, contributing to less retention of bacteria.

15.
Beilstein J Nanotechnol ; 14: 68-78, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761680

RESUMO

Industrial applications of nanomaterials require large-scale production methods, such as liquid phase exfoliation (LPE). Regarding this, it is imperative to characterize the obtained materials to tailor parameters such as exfoliation medium, duration, and mechanical energy source to the desired applications. This work presents results of statistical analyses of talc flakes obtained by LPE in four different media. Talc is a phyllosilicate that can be exfoliated into nanoflakes with great mechanical properties. Sodium cholate at two different concentrations (below and at the critical micelar concentration), butanone, and Triton-X100 were employed as exfoliation medium for talc. Using recent published statistical analysis methods based on atomic force microscopy images of thousands of flakes, the shape and size distribution of nanotalc obtained using the four different media are compared. This comparison highlights the strengths and weaknesses of the media tested and hopefully will facilitate the choice of the medium for applications that have specific requirements.

16.
Microb Pathog ; 175: 105960, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587926

RESUMO

Antibiotic resistance associated with pulmonary infection agents has become a public health problem, being considered one of the main priorities for immediate resolution. Thus, to increase the therapeutic options in the fight against resistant microorganisms, the synthesis of molecules from pre-existing drugs has shown to be a promising alternative. In this sense, the present work reports the synthesis, characterization, and biological evaluation (against fungal and bacterial agents that cause lung infections) of potential metallodrugs based on sulfamethoxazole complexed with AuI, AgI, HgII, CdII, NiII, and CuII. The minimal inhibitory concentration (MIC) value was used to evaluate the antifungal and antibacterial properties of the compounds. In addition, it was also evaluated the antibiofilm capacity in Pseudomonas aeruginosa, through the quantification of its biomass and visualization using atomic force microscopy. For each case, molecular docking calculations were carried out to suggest the possible biological target of the assayed inorganic complexes. Our results indicated that the novel inorganic complexes are better antibacterial and antifungal than the commercial antibiotic sulfamethoxazole, highlighting the AgI-complex, which was able to inhibit the growth of microorganisms that cause lung diseases with concentrations in the 2-8 µg mL-1 range, probably at targeting dihydropteroate synthetase - a key enzyme involved in the folate synthesis. Furthermore, sulfamethoxazole complexes were able to inhibit the formation of bacterial biofilms at significantly lower concentrations than free sulfamethoxazole, probably mainly targeting the active site of LysR-type transcriptional regulator (PqsR). Overall, the present study reports preliminary results that demonstrate the derivatization of sulfamethoxazole with transition metal cations to obtain potential metallodrugs with applications as antimicrobial and antifungal against pulmonary infections, being an alternative for drug-resistant strains.


Assuntos
Antifúngicos , Sulfametoxazol , Sulfametoxazol/farmacologia , Antifúngicos/farmacologia , Simulação de Acoplamento Molecular , Antibacterianos/química , Biofilmes , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
17.
Food Chem ; 403: 134319, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182849

RESUMO

Calotropis procera cysteine peptidases (CpCPs) have presented several potential biotechnological applications. Here, these enzymes were immobilized on glyoxyl-agarose (glyoxyl-CpCPs) with yields of 90-95 % and the recovered activities ranged from 10 % to 15 %, according to enzyme loadings (5, 10, 20, 40, and 50 mgBSAeq/g). Spectrophotometric assays and SDS-PAGE showed that the casein hydrolysis by glyoxyl-CpCPs was similar to soluble CpCPs. In addition, glyoxyl-CpCPs exhibited similar ratio of milk-clotting activity to proteolytic activity in comparison with soluble CpCPs and chymosin. Even after being stored for six months at 8 °C, the residual proteolytic activity of glyoxyl-CpCPs remained close to 100 %. Atomic force microscopy and dynamic light scattering techniques showed that the process of casein micelle aggregation after treatment with glyoxyl-CpCPs was very similar to its soluble form and chymosin. Glyoxyl-CpCPs performed well after five reaction cycles, producing cheeses with yield, moisture, protein, and fat similar to those produced with chymosin.


Assuntos
Calotropis , Cisteína Proteases , Sefarose , Quimosina , Cisteína , Caseínas , Cisteína Proteases/metabolismo , Concentração de Íons de Hidrogênio , Enzimas Imobilizadas/metabolismo
18.
Photochem Photobiol Sci ; 22(2): 311-318, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36216976

RESUMO

Candida albicans is responsible for most of the nosocomial infections that affect immunocompromised individuals. We investigated the application of eosin in photodynamic inactivation as a strategy in the inhibition of the growth of C. albicans and the morphological variation and growth dynamics in light of fractal theory. The damage caused to fungal structures alters the roughness of the colony, and these changes were described by parameters that were defined by mathematical models. Proliferation of the fungi should be inhibited in the center of the colonies and the analysis of the edges gives an indication about the dynamics of growth and cell reproduction.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fármacos Fotossensibilizantes/química , Fractais , Candida albicans , Modelos Teóricos
19.
Drug Chem Toxicol ; 46(4): 665-676, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35635136

RESUMO

Notwithstanding the advances in molecular target-based drugs, chemotherapy remains the most common cancer treatment, despite its high toxicity. Consequently, effective anticancer therapies with fewer adverse effects are needed. Therefore, this study aimed to determine the anticancer activity of the dichloromethane fraction (DCMF) isolated from Arrabidae brachypoda roots, whose components are three unusual dimeric flavonoids. The toxicity of DCMF was investigated in breast (MCF-7), prostate (DU145), and cervical (HeLa) tumor cells, as well as non-tumor cells (PNT2), using sulforhodamine B (cell viability), Comet (genotoxicity), clonogenicity (reproductive capacity) and wound healing (cell migration) assays, and atomic force microscopy (AFM) for ultrastructural cell membrane alterations. Molecular docking revealed affinity between albumin and each rare flavonoid, supporting the impact of fetal bovine serum in DCMF antitumor activity. The IC50 values for MCF7, HeLa, and DU145 were 2.77, 2.46, and 2.51 µg/mL, respectively, and 4.08 µg/mL for PNT2. DCFM was not genotoxic to tumor or normal cells when exposed to twice the IC50 for up to 24 h, but it inhibited tumor cell migration and reproduction compared to normal cells. Additionally, AFM revealed alterations in the ultrastructure of tumor nuclear membrane surfaces, with a positive correlation between DCMF concentration and tumor cell roughness. Finally, we found a negative correlation between roughness and the ability of DCMF-treated tumor cells to migrate and form colonies with more than 50 cells. These findings suggest that DCFM acts by causing ultrastructural changes in tumor cell membranes while having fewer toxicological effects on normal cells.


Assuntos
Flavonoides , Neoplasias , Masculino , Humanos , Flavonoides/farmacologia , Flavonoides/química , Simulação de Acoplamento Molecular , Células HeLa , Membrana Celular , Sobrevivência Celular , Linhagem Celular Tumoral
20.
Polymers (Basel) ; 14(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36236064

RESUMO

The replacement of synthetic polymers by starch biofilms entails a significant potentiality. They are non-toxic materials, biodegradable, and relatively easy to gather from several sources. However, various applications may require physicochemical properties that might prevent the use of some types of starch biofilms. Causes should be explored at the nanoscale. Here we present an atomic force microscopy surface analysis of starch biofilms extracted from the Andean tubers melloco (Ullucus tuberosus), mashua (Tropaeolum tuberosum), oca (Oxalis tuberosa), and potato (Solanum tuberosum) and relate the results to the macroscopic effects of moisture content, water activity, total soluble matter, water vapor permeability, elastic properties, opacity and IR absorption. Characterization reveals important differences at the nanoscale between the starch-based biofilms examined. Comparison permitted correlating macroscopic properties observed to the topography and tapping phase contrast segregation at the nanoscale. For instance, those samples presenting granular topography and disconnected phases at the nanoscale are associated with less elastic strength and more water molecule affinity. As an application example, we propose using the starch biofilms developed as a matrix to dispose of mouthwash and discover that melloco films are quite appropriate for this purpose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA