RESUMO
The importance of evaluating how natural organic matter influences the mobility of arsenic species in an ecosystem is an environmental concern. This work aimed to evaluate the interaction between humic substances (HS) and four arsenic species of high toxicity [As(III), As(V), MMA(V), and DMA(V)] (HS-As) under the influence of HS concentration and pH. Next, the complexing capacity (CC) of HS by As(III) was determined in function of pH, ionic strength and co-existing ions. The free arsenic (Asfree) was determined after a tangential flow ultrafiltration procedure by hydride generation atomic fluorescence spectrometry. The better HS-As interactions for As(III) and As(V) at pH 10.5 reached 52% and 61%, respectively. The increase in pH and ionic strength, as well as co-existing ions increased the CC, which reached 1.57 mg of As(III) g-1 HS. We proposed a HS-As interaction model based on the inner and outer binding sites of HS from these results. The inner sites were occupied through hydrogen bonds, Pearson acid-base, hydrophobic, and van der Waals interactions for trivalent arsenic species, while the interactions through the outer sites for pentavalent arsenic species were mostly by hydrogen bonds and electrostatic forces. According to ecotoxicological studies against Artemia salina, the presence of HS decreased the toxicity of As(III) and As(V) as the lethal concentration increased from 5.81 to 8.82 mg L-1 and from 8.82 to 13.37 mg L-1, respectively. From the results through the proposed model, it was possible to successfully understand the interaction dynamic between soil HS and As(III), As(V), MMA(V) and DMA(V) under simulated environmental conditions.
Assuntos
Arsênio , Arsenicais , Ecossistema , Substâncias Húmicas , Espectrometria de FluorescênciaRESUMO
Arsenic is the most toxic element for humans. Presenting naturally in aquatic ecosystems and due to anthropogenic action, this semi-metal transfers to shellfish through the food chain. This systematic review aims to explain the dynamic of arsenic in the marine aquatic system, investigating factors that affect its bioaccumulation. A total of 64 articles were considered from three databases. The key abiotic factor influencing the presence of arsenic in shellfish is anthropogenic contamination, followed by geographic location. The crucial biotic factor is the genetics of each species of shellfish, including their diet habits, habitat close to the sediment, metabolic abilities, physiological activities of organisms, and metal levels in their habitats and food. Finally, arsenic presents an affinity for specific tissues in shellfish. Despite containing mostly less toxic organic arsenic, shellfish are a relevant source of arsenic in the human diet.
Assuntos
Arsênio , Dieta , Contaminação de Alimentos , Arsênio/análise , Ecossistema , Contaminação de Alimentos/análise , Humanos , Medição de Risco , Alimentos Marinhos/análise , Frutos do Mar/análiseRESUMO
This study assessed the effect of rinsing and boiling on total content of As (tAs) and of its inorganic and organic forms in different types of rice (polished and brown) from Spain and Ecuador. Rice was subjected to five different treatments. The results showed that the treatment consisting of three grain rinsing cycles followed by boiling in excess water showed a significant decrease in tAs content compared with raw rice. Regarding As species, it is worth noting that the different treatments significantly reduced the content of the most toxic forms of As. The estimated lifetime health risks indicate that pre-rinsing alone can reduce the risk by 50%, while combining it with discarding excess water can reduce the risk by 83%; therefore, the latter would be the preferable method.
Assuntos
Arsênio/análise , Oryza , Culinária , Equador , Contaminação de Alimentos/análise , EspanhaRESUMO
The capacity of Elodea canadensis to phytofiltrate arsenic species from water was evaluated. Plants were adapted to tap water and supplemented with 15 and 250 µg L-1 of As. Inorganic arsenic species (As III, As V), and organic arsenic compounds: monomethylarsonate (MMA) and dimethylarsinate (DMA) were analyzed. Sampling was carried out at different times after exposure in culture water and plant organs. Plants exposed to 15 µg L-1 of As concentration showed no significant difference on As concentration (95% confidence level) in their organs compared to controls. When plants were exposed to 250 µg L-1 of As concentration, a significant increase of As concentration in plant organs was observed. After 1 h exposure, plants reduce 63.16% the As concentration in the culture water, with a bioaccumulation factor (BF) of 4.3. Under these conditions, E. canadensis accumulate As V in roots and do not translocate it to stems (transfer factor <1). MMA was determined in stems and leaves. E. canadensis effectively phytofiltrate As from tap water of a city located in an arsenic endemic area from concentrations of 36 µg L-1 to undetectable levels (10 ng L-1).
Assuntos
Arsênio/análise , Hydrocharitaceae , Biodegradação Ambiental , Ácido Cacodílico , CidadesRESUMO
In this work, we investigated the stability of arsenic trioxide (ATO) used in leukemia treatment, encapsulated with nanoliposome, with the aid of ultrasound treatment. Stability studies of As species were followed by liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS), allowing for the detection of the conversion of low amounts of As(III) to As(V) or the formation of other As species. The influence of storage temperature and time on ATO was evaluated. Low amounts of As(III) to As(V) conversions were observed when the As encapsulated with nanoliposome was incubated at 25 °C and 40 °C. However, As(III) was stable if the solution was maintained at 5 °C, even after 90 days. No formation of other As species was observed, indicating good stability of the encapsulated ATO. Next step of the work will focus on spray drying of ATO nanoliposomes-encapsuleted with the aim of long term stability of As.
Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Trióxido de Arsênio/administração & dosagem , Trióxido de Arsênio/química , Antineoplásicos/farmacologia , Trióxido de Arsênio/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida , Estabilidade de Medicamentos , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Lipossomos , Espectrometria de MassasRESUMO
This study assessed the effects of polymorphic variants of gutathione-S-transferase and metallothioneins on profiles of urinary arsenic species. Drinking groundwater from Margarita and San Fernando, Colombia were analyzed and the lifetime average daily dose (LADD) of arsenic was determined. Specific surveys were applied to collect demographic information and other exposure factors. In addition, GSTT1-null, GSTM1-null, GSTP1-rs1695 and MT-2A-rs28366003 genetic polymorphisms were evaluated, either by direct PCR or PCR-RFLP. Urinary speciated arsenic concentrations were determined by HPLC-HG-AFS for species such as AsIII, AsV, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total urinary As (TuAs). Primary methylation index (PMI) and secondary methylation index (SMI) were also calculated as indicators of the metabolic capacity. Polymorphisms effects were tested using multivariate analysis, adjusted by potential confounders. The As concentrations in groundwater were on average 34.6 ± 24.7 µg/L greater than the WHO guideline for As (10 µg/L). There was a correlation between As concentrations in groundwater and TuAs (r = 0.59; p = 0.000). Urinary inorganic arsenic (%InAs) was associated with GSTP1, LADD, GSTP1*Age, GSTP1*alcohol consumption (r2â¯=â¯0.43; likelihood-ratio test, pâ¯=â¯0.000). PMI was associated with sex (r2 = 0.20; likelihood-ratio test, p = 0.007). GSTP1 (AG + GG) homozygotes/heterozygotes could increase urinary %InAs and decrease the PMI ratio in people exposed to low and high As from drinking groundwater. Therefore, the explanatory models showed the participation of some covariates that could influence the effects of the polymorphisms on these exposure biomarkers to As.
Assuntos
Arsênio/toxicidade , Arsênio/urina , Exposição Ambiental/efeitos adversos , Glutationa Transferase/genética , Metalotioneína/genética , Polimorfismo Genético , Adulto , Arsênio/química , Feminino , Água Subterrânea/química , Humanos , Masculino , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/urinaRESUMO
The presence of arsenic (As) in agricultural food products is a matter of concern because it can cause adverse health effects at low concentrations. Agricultural-product intake constitutes a principal source for As exposure in humans. In this study, the contribution of the chemical-soil parameters in As accumulation and translocation in the maize crop from a mining area of San Luis Potosi was evaluated. The total arsenic concentration and arsenic speciation were determined by HG-AFS and IC-HG-AFS, respectively. The data analysis was conducted by cluster analysis (CA) and principal component analysis (PCA). The soil pH presented a negative correlation with the accumulated As in each maize plant part, and parameters such as iron (Fe) and manganese (Mn) presented a higher correlation with the As translocation in maize. Thus, the metabolic stress in maize may induce organic acid exudation leading a higher As bioavailability. A high As inorganic/organic ratio in edible maize plant tissues suggests a substantial risk of poisoning by this metalloid. Careful attention to the chemical changes in the rhizosphere of the agricultural zones that can affect As transfer through the food chain could reduce the As-intoxication risk of maize consumers.