RESUMO
Epilepsy is a disorder characterized by a predisposition to generate seizures. Levetiracetam (LEV) is an antiseizure drug that has demonstrated oxidant-antioxidant effects during the early stages of epilepsy in several animal models. However, the effect of LEV on oxidant-antioxidant activity during long-term epilepsy has not been studied. Therefore, the objective of the present study was to determine the effects of LEV on the concentrations of five antioxidant enzymes and on the levels of four oxidant stress markers in the hippocampus of rats with temporal lobe epilepsy at 5.7 months after status epilepticus (SE). The results revealed that superoxide dismutase (SOD) activity was significantly greater in the epileptic group (EPI) than in the control (CTRL), CTRL + LEV and EPI + LEV groups. No significant differences were found among the groups' oxidant markers. However, the ratios of SOD/hydrogen peroxide (H2O2), SOD/glutathione peroxidase (GPx) and SOD/GPx + catalase (CAT) were greater in the EPI group than in the CTRL and EPI + LEV groups. Additionally, there was a positive correlation between SOD activity and GPx activity in the EPI + LEV group. LEV-mediated modulation of the antioxidant system appears to be time dependent; at 5.7 months after SE, the role of LEV may be as a stabilizer of the redox state.
Assuntos
Antioxidantes , Catalase , Epilepsia do Lobo Temporal , Glutationa Peroxidase , Levetiracetam , Estresse Oxidativo , Superóxido Dismutase , Animais , Levetiracetam/farmacologia , Levetiracetam/uso terapêutico , Ratos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Masculino , Superóxido Dismutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Catalase/metabolismo , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Oxidantes/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Ratos WistarRESUMO
Bixin (C25H30O4; 394.51 g/mol) is the main apocarotenoid found in annatto seeds. It has a 25-carbon open chain structure with a methyl ester group and carboxylic acid. Bixin increases the expression of antioxidant enzymes, which may be interesting for counteracting oxidative stress. This study investigated whether bixin-rich annatto extract combined with metformin was able to improve the disturbances observed in high-fat diet (HFD)-induced obesity in mice, with an emphasis on markers of oxidative damage and antioxidant defenses. HFD-fed mice were treated for 8 weeks with metformin (50 mg/kg) plus bixin-rich annatto extract (5.5 and 11 mg/kg). This study assessed glucose tolerance, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma, fluorescent AGEs (advanced glycation end products), TBARSs (thiobarbituric acid-reactive substances), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver and kidneys. Treatment with bixin plus metformin decreased body weight gain, improved insulin sensitivity, and decreased AGEs and TBARSs in the plasma, liver, and kidneys. Bixin plus metformin increased the activities of PON-1, SOD, CAT, and GSH-Px. Bixin combined with metformin improved the endogenous antioxidant defenses in the obese mice, showing that this combined therapy may have the potential to contrast the metabolic complications resulting from oxidative stress.
RESUMO
Early life stress (ELS) is a risk factor for the development of chronic diseases resulting from functional alterations of organs in the cardiorespiratory and renal systems. This work studied the changes in oxidative stress enzyme activities (EAs) of SOD, CAT, GPX, GR, GST, NOS, MDA, and FRAP in different organs (heart, liver, kidney, adrenal glands (AGs), and pancreas) of male and female Sprague-Dawley rat pups on postnatal day (PN) 15, immediately after basal and acute or chronic stress conditions were accomplished, as follows: basal control (BC; undisturbed maternal pups care), stress control (SC; 3 h maternal separation on PN15), basal maternal separation (BMS; daily 3 h maternal separation on PN 1-14), and stress maternal separation (SMS; daily 3 h maternal separation on PN 1-14 and 3 h maternal separation on PN15). Acute or long-term stress resulted in overall oxidative stress, increase in EA, and reduced antioxidant capacity in these organs. Some different response patterns, due to precedent SMS, were observed in specific organs, especially in the AGs. Acute stress exposure increases the EA, but chronic stress generates a response in the antioxidant system in some of the organs studied and is damped in response to a further challenge.
RESUMO
OBJECTIVE: Atherosclerosis (AS) is a common pathogenesis of cardiovascular diseases. Puerarin (Pue) is a Chinese herbal remedy used to prevent and treat AS. Here, this research investigated the effect of Pue on AS progression. METHODS: ApoE-/- mice were induced with acrolein. Body weight, blood lipid index, inflammatory factors, mitochondrial oxidative stress, and lipid deposition were detected. IL-6 and TNF-α were detected by ELISA. Oil red staining and H&E staining were used to observe the aortic sinus plaque lesions. Serum expressions of inflammatory factors IL-6, TNF-a, SOD, GSH and MDA were detected by ELISA, the mRNA expression levels of HDAC1 in the aorta were detected by RT-qPCR, and IL-6 and TNF-α in the aorta were detected by immunohistochemistry. JNK, p-JNK, OPA-1, and HDAC1 were detected by Western blotting. RESULTS: Pue administration can effectively reduce lipid accumulation in AS mice induced by acrolein. Pue promoted the activity of SOD, GSH and MDA, and inhibited the formation of atherosclerotic plaques and the process of aortic histological changes. Pue reduced IL-6 and TNF-α. HDAC1 expression was down-regulated and p-JNK-1 and JNK protein expression was up-regulated. CONCLUSION: Pue reduces inflammation and alleviates AS induced by acrolein by mediating the JNK pathway to inhibit HDAC1-mediated oxidative stress disorder.
Assuntos
Acroleína , Aterosclerose , Histona Desacetilase 1 , Isoflavonas , Estresse Oxidativo , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Aterosclerose/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Acroleína/farmacologia , Masculino , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Western Blotting , Aorta/efeitos dos fármacos , Aorta/patologiaRESUMO
Alcoholic Fatty Liver Disease (AFLD) is characterized by the accumulation of lipids in liver cells owing to the metabolism of ethanol. This process leads to a decrease in the NAD+/NADH ratio and the generation of reactive oxygen species. A systematic review and meta-analysis were conducted to investigate the role of oxidative stress in AFLD. A total of 201 eligible manuscripts were included, which revealed that animals with AFLD exhibited elevated expression of CYP2E1, decreased enzymatic activity of antioxidant enzymes, and reduced levels of the transcription factor Nrf2, which plays a pivotal role in the synthesis of antioxidant enzymes. Furthermore, animals with AFLD exhibited increased levels of lipid peroxidation markers and carbonylated proteins, collectively contributing to a weakened antioxidant defense and increased oxidative damage. The liver damage in AFLD was supported by significantly higher activity of alanine and aspartate aminotransferase enzymes. Moreover, animals with AFLD had increased levels of triacylglycerol in the serum and liver, likely due to reduced fatty acid metabolism caused by decreased PPAR-α expression, which is responsible for fatty acid oxidation, and increased expression of SREBP-1c, which is involved in fatty acid synthesis. With regard to inflammation, animals with AFLD exhibited elevated levels of pro-inflammatory cytokines, including TNF-a, IL-1ß, and IL-6. The heightened oxidative stress, along with inflammation, led to an upregulation of cell death markers, such as caspase-3, and an increased Bax/Bcl-2 ratio. Overall, the findings of the review and meta-analysis indicate that ethanol metabolism reduces important markers of antioxidant defense while increasing inflammatory and apoptotic markers, thereby contributing to the development of AFLD.
Assuntos
Fígado Gorduroso Alcoólico , Estresse Oxidativo , Animais , Humanos , Antioxidantes/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso Alcoólico/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Type II pneumocytes are the target of the SARS-CoV-2 virus, which alters their redox homeostasis to increase reactive oxygen species (ROS). Melatonin (MT) has antioxidant proprieties and protects mitochondrial function. In this study, we evaluated whether treatment with MT compensated for the redox homeostasis alteration in serum from COVID-19 patients. We determined oxidative stress (OS) markers such as carbonyls, glutathione (GSH), total antioxidant capacity (TAC), thiols, nitrites (NO2-), lipid peroxidation (LPO), and thiol groups in serum. We also studied the enzymatic activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST), reductase (GR), thioredoxin reductase (TrxR), extracellular superoxide dismutase (ecSOD) and peroxidases. There were significant increases in LPO and carbonyl quantities (p ≤ 0.03) and decreases in TAC and the quantities of NO2-, thiols, and GSH (p < 0.001) in COVID-19 patients. The activities of the antioxidant enzymes such as ecSOD, TrxR, GPx, GST, GR, and peroxidases were decreased (p ≤ 0.04) after the MT treatment. The treatment with MT favored the activity of the antioxidant enzymes that contributed to an increase in TAC and restored the lost redox homeostasis. MT also modulated glucose homeostasis, functioning as a glycolytic agent, and inhibited the Warburg effect. Thus, MT restores the redox homeostasis that is altered in COVID-19 patients and can be used as adjuvant therapy in SARS-CoV-2 infection.
Assuntos
Antioxidantes , Tratamento Farmacológico da COVID-19 , COVID-19 , Homeostase , Melatonina , Oxirredução , Estresse Oxidativo , SARS-CoV-2 , Melatonina/uso terapêutico , Melatonina/farmacologia , Humanos , Oxirredução/efeitos dos fármacos , COVID-19/metabolismo , COVID-19/virologia , COVID-19/sangue , Homeostase/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Idoso , Adulto , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Glutationa/sangueRESUMO
Extended periods of water stress negatively affect sugarcane crop production. The foliar application of supplements containing specific nutrients and/or organic molecules such as amino acids can improve sugarcane metabolism, stalk and sugar yields, and the quality of the extracted juice. The present study assessed the effectiveness of the foliar application of an abiotic stress protection complement (ASPC) composed of 18 amino acids and 5 macronutrients. The experiments were carried out in the field with two treatments and twelve replicates. The two treatments were no application of ASPC (control) and foliar application of ASPC. The foliar application of ASPC increased the activity of antioxidant enzymes. The Trolox-equivalent antioxidant capacity (DPPH) was higher in ASPC-treated plants than in control plants, reflecting higher antioxidant enzyme activity and lower malondialdehyde (MDA) levels. The level of H2O2 was 11.27 nM g-1 protein in plants treated with ASPC but 23.71 nM g-1 protein in control plants. Moreover, the application of ASPC increased stalk yield and sucrose accumulation, thus increasing the quality of the raw material. By positively stabilizing the cellular redox balance in sugarcane plants, ASPC application also increased energy generation. Therefore, applying ASPC is an effective strategy for relieving water stress while improving crop productivity.
RESUMO
Physical activity results in oxidative stress, as evidenced by the increased production of reactive oxygen, nitrogen species, and inflammatory mediators. The management of these components is instrumental for antioxidant adaptation to exercise and post-exercise recovery. Therefore, the present report aims to study the antioxidant response to two types of exercise (a 2000 m run and a burpee test) in healthy volunteers after a long period of inactivity (1-2 months). Antioxidant enzyme activities and oxidative stress markers (protein carbonyls and malondialdehyde content) were measured in neutrophils, peripheral blood mononuclear cells, and plasma. These parameters were determined under basal conditions and immediately post-exercise. Compared to those in basal state, neutrophil superoxide dismutase (28.3 vs. 22.9 pkat/109 cells), glutathione peroxidase (147.5 vs. 120.1 nkat/109 cells), and catalase (106.3 vs. 57.9 k/109 cells) were activated significantly (p < 0.05) after the burpee test. Peripheral blood mononuclear cells exhibited only significant (p < 0.05) catalase activation (113.6 vs. 89.4 k/109 cells) after the burpee test. Other enzymes, such as glutathione reductase and myeloperoxidase, tended to increase post-exercise, although the differences from baseline were not significant. Finally, compared to basal conditions, the protein carbonyl (24.5 vs. 14.5 mmol/L) and malondialdehyde (39.6 vs. 18.3 mmol/L) contents increased significantly (p < 0.05) in neutrophils and in plasma (115.1 vs. 97.8 and 130.2 vs. 123.4 µmol/L, respectively) after the burpee test. In conclusion, high-intensity exercise seems to induce immediate oxidative stress in inactive individuals, and the acute antioxidant response was slightly greater after the burpee test than after the 2000 m run. Glutathione-dependent antioxidant systems are activated immediately as protective mechanisms.
RESUMO
(1) Background: Ozone exposure is a promising tool for treating liver damage since it is known to control the release of free radicals and increase the expression of antioxidant enzymes. The objective is to investigate the main intracellular pathways activated after exposure to ozone, considering the dosage of antioxidant enzymes and markers of oxidative stress. (2) Methods: This systematic review was performed based on the PRISMA guidelines and using a structured search in MEDLINE (PubMed), Scopus, and Web of Science. Bias analysis and methodological quality assessments were examined using the SYRCLE Risk of Bias tool. (3) Results: Nineteen studies were selected. The results showed that the exposure to ozone has a protective effect on liver tissue, promoting a decrease in inflammatory markers and a reduction in oxidative stress in liver tissue. In addition, ozone exposure also promoted an increase in antioxidant enzymes. The morphological consequences of controlling these intracellular pathways were reducing the tissue inflammatory process and reducing areas of degeneration and necrosis. (4) Conclusions: Ozone exposure has a beneficial effect on models of liver injury through the decrease in oxidative stress in tissue and inflammatory markers. In addition, it regulates the Nrf2/ARE antioxidant pathway and blocks the NF-κB inflammatory pathway.
RESUMO
Food processing and digestion can alter bioactive compound composition of food, affecting their potential biological activity. In this study, we evaluated the direct and protective antioxidant effects of polyphenols extracted from defatted chia flour (DCF) (salviaflaside, rosmarinic and fertaric acid as major compounds), sweet cookies supplemented with DCF (CFC) (same major compounds), and their digested fractions (rosmarinic acid, salviaflaside, fertaric and salvianolic E/B/L acid as major compounds) in HepG2 cells in basal and in oxidative stress conditions. DCF showed protective antioxidant effects by decreasing reactive oxygen species (ROS) and protein oxidation products (POP) while increasing reduced glutathione (GSH). Additionally, CFC revealed similar protective effects and even showed enhanced modulation of the antioxidant system due to the activation of antioxidant enzymes. However, the digested fractions only decreased ROS, indicating continued antioxidant effects. This study underscores the importance of evaluating manufacturing and digestion effects to confirm a food's antioxidant properties.
RESUMO
Skin is the ultimate barrier between body and environment and prevents water loss and penetration of pathogens and toxins. Internal and external stressors, such as ultraviolet radiation (UVR), can damage skin integrity and lead to disorders. Therefore, skin health and skin ageing are important concerns and increased research from cosmetic and pharmaceutical sectors aims to improve skin conditions and provide new anti-ageing treatments. Biomolecules, compared to low molecular weight drugs and cosmetic ingredients, can offer high levels of specificity. Topically applied enzymes have been investigated to treat the adverse effects of sunlight, pollution and other external agents. Enzymes, with a diverse range of targets, present potential for dermatological use such as antioxidant enzymes, proteases and repairing enzymes. In this review, we discuss enzymes for dermatological applications and the challenges associated in this growing field.
Assuntos
Cosméticos , Dermatopatias , Humanos , Raios Ultravioleta/efeitos adversos , Pele , Dermatopatias/terapia , Luz Solar/efeitos adversos , Cosméticos/farmacologiaRESUMO
During present study, the copper (Cu) mediated oxidative stress was measured that induced DNA damage by concentrating in the tissues of fish, Catla catla (14.45±1.24g; 84.68±1.45mm) (Hamilton,1822). Fish fingerlings were retained in 5 groups for 14, 28, 42, 56, 70 and 84 days of the exposure period. They were treated with 2/3, 1/3, 1/4 and 1/5 (T1-T4) of 96h lethal concentration of copper. Controls were run along with all the treatments for the same durations. A significant (p < 0.05) dose and time dependent concentration of Cu was observed in the gills, liver, kidney, muscles, and brain of C. catla. Among organs, the liver showed a significantly higher concentration of Cu followed by gills, kidney, brain, and muscles. Copper accumulation in these organs caused a significant variation in the activities of enzymes viz. superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). The SOD activity varied significantly in response to the exposure time of Cu as 56 > 70 > 42 > 84 > 28 > 14 days while CAT activity exhibited an inverse relationship with the increase in Cu concentration. POD activity showed a significant rise with an increase in Cu exposure duration. Comet assay exhibited significant DNA damage in the peripheral erythrocytes of Cu exposed C. catla. Among four exposure concentrations, 2/3rd of LC50 (T1) caused significantly higher damage to the nuclei compared to control. Increased POD and SOD activity, as well as a decrease in CAT activity in response to Cu, demonstrates the involvement of a protective mechanism against reactive oxygen species (ROS), whereas increased ROS resulted in higher DNA damage. These above-mentioned molecular markers can be efficiently used for the biomonitoring of aquatic environments and conservation of edible fish fauna.
Durante o presente estudo, o estresse oxidativo mediado pelo cobre (Cu) foi medido que induziu danos ao DNA por concentração nos tecidos de peixes, Catla catla (14,45 ± 1,24g; 84,68 ± 1,45mm) (Hamilton, 1822). Os alevinos foram retidos em 5 grupos por 14, 28, 42, 56, 70 e 84 dias do período de exposição. Eles foram tratados com 2/3, 1/3, 1/4 e 1/5 (T1-T4) de 96h de concentração letal de cobre. Os controles foram executados junto com todos os tratamentos para as mesmas durações. Uma significativa (p <0,05) concentração dependente do tempo e da dose de Cu foi observada nas brânquias, fígado, rim, músculos e cérebro de C. catla. Entre os órgãos, o fígado apresentou uma concentração significativamente maior de cobre, seguido por guelras, rins, cérebro e músculos. O acúmulo de cobre nesses órgãos causou uma variação significativa nas atividades das enzimas viz. superóxido dismutase (SOD), catalase (CAT) e peroxidase (POD). A atividade de SOD variou significativamente em resposta ao tempo de exposição de Cu como 56> 70> 42> 84> 28> 14 dias, enquanto a atividade de CAT exibiu uma relação inversa com o aumento na concentração de Cu. A atividade POD mostrou um aumento significativo com um aumento na duração da exposição ao Cu. O ensaio do cometa exibiu dano significativo ao DNA induzido por Cu nos eritrócitos periféricos de C. catla. Entre as quatro concentrações de exposição, 2/3 do LC50 (T1) causou danos significativamente maiores aos núcleos em comparação com o controle. O aumento da atividade de POD e SOD, bem como uma diminuição na atividade de CAT em resposta ao Cu, demonstra o envolvimento de um mecanismo protetor contra espécies reativas de oxigênio (ROS), enquanto o aumento de ROS resultou em maior dano ao DNA. Esses marcadores moleculares mencionados acima podem ser usados ââde forma eficiente para o biomonitoramento de ambientes aquáticos e conservação da ictiofauna comestível.
Assuntos
Animais , Cobre , Peixes , Água Doce , BioacumulaçãoRESUMO
Abstract During present study, the copper (Cu) mediated oxidative stress was measured that induced DNA damage by concentrating in the tissues of fish, Catla catla (14.45±1.24g; 84.68±1.45mm) (Hamilton,1822). Fish fingerlings were retained in 5 groups for 14, 28, 42, 56, 70 and 84 days of the exposure period. They were treated with 2/3, 1/3, 1/4 and 1/5 (T1-T4) of 96h lethal concentration of copper. Controls were run along with all the treatments for the same durations. A significant (p 0.05) dose and time dependent concentration of Cu was observed in the gills, liver, kidney, muscles, and brain of C. catla. Among organs, the liver showed a significantly higher concentration of Cu followed by gills, kidney, brain, and muscles. Copper accumulation in these organs caused a significant variation in the activities of enzymes viz. superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). The SOD activity varied significantly in response to the exposure time of Cu as 56 > 70 > 42 > 84 > 28 > 14 days while CAT activity exhibited an inverse relationship with the increase in Cu concentration. POD activity showed a significant rise with an increase in Cu exposure duration. Comet assay exhibited significant DNA damage in the peripheral erythrocytes of Cu exposed C. catla. Among four exposure concentrations, 2/3rd of LC50 (T1) caused significantly higher damage to the nuclei compared to control. Increased POD and SOD activity, as well as a decrease in CAT activity in response to Cu, demonstrates the involvement of a protective mechanism against reactive oxygen species (ROS), whereas increased ROS resulted in higher DNA damage. These above-mentioned molecular markers can be efficiently used for the biomonitoring of aquatic environments and conservation of edible fish fauna.
Resumo Durante o presente estudo, o estresse oxidativo mediado pelo cobre (Cu) foi medido que induziu danos ao DNA por concentração nos tecidos de peixes, Catla catla (14,45 ± 1,24g; 84,68 ± 1,45mm) (Hamilton, 1822). Os alevinos foram retidos em 5 grupos por 14, 28, 42, 56, 70 e 84 dias do período de exposição. Eles foram tratados com 2/3, 1/3, 1/4 e 1/5 (T1-T4) de 96h de concentração letal de cobre. Os controles foram executados junto com todos os tratamentos para as mesmas durações. Uma significativa (p 0,05) concentração dependente do tempo e da dose de Cu foi observada nas brânquias, fígado, rim, músculos e cérebro de C. catla. Entre os órgãos, o fígado apresentou uma concentração significativamente maior de cobre, seguido por guelras, rins, cérebro e músculos. O acúmulo de cobre nesses órgãos causou uma variação significativa nas atividades das enzimas viz. superóxido dismutase (SOD), catalase (CAT) e peroxidase (POD). A atividade de SOD variou significativamente em resposta ao tempo de exposição de Cu como 56> 70> 42> 84> 28> 14 dias, enquanto a atividade de CAT exibiu uma relação inversa com o aumento na concentração de Cu. A atividade POD mostrou um aumento significativo com um aumento na duração da exposição ao Cu. O ensaio do cometa exibiu dano significativo ao DNA induzido por Cu nos eritrócitos periféricos de C. catla. Entre as quatro concentrações de exposição, 2/3 do LC50 (T1) causou danos significativamente maiores aos núcleos em comparação com o controle. O aumento da atividade de POD e SOD, bem como uma diminuição na atividade de CAT em resposta ao Cu, demonstra o envolvimento de um mecanismo protetor contra espécies reativas de oxigênio (ROS), enquanto o aumento de ROS resultou em maior dano ao DNA. Esses marcadores moleculares mencionados acima podem ser usados de forma eficiente para o biomonitoramento de ambientes aquáticos e conservação da ictiofauna comestível.
RESUMO
Abstract Objective: Atherosclerosis (AS) is a common pathogenesis of cardiovascular diseases. Puerarin (Pue) is a Chinese herbal remedy used to prevent and treat AS. Here, this research investigated the effect of Pue on AS progression. Methods: ApoE-/- mice were induced with acrolein. Body weight, blood lipid index, inflammatory factors, mitochondrial oxidative stress, and lipid deposition were detected. IL-6 and TNF-α were detected by ELISA. Oil red staining and H&E staining were used to observe the aortic sinus plaque lesions. Serum expressions of inflammatory factors IL-6, TNF-a, SOD, GSH and MDA were detected by ELISA, the mRNA expression levels of HDAC1 in the aorta were detected by RT-qPCR, and IL-6 and TNF-α in the aorta were detected by immunohistochemistry. JNK, p-JNK, OPA-1, and HDAC1 were detected by Western blotting. Results: Pue administration can effectively reduce lipid accumulation in AS mice induced by acrolein. Pue promoted the activity of SOD, GSH and MDA, and inhibited the formation of atherosclerotic plaques and the process of aortic histological changes. Pue reduced IL-6 and TNF-α. HDAC1 expression was down-regulated and p-JNK-1 and JNK protein expression was up-regulated. Conclusion: Pue reduces inflammation and alleviates AS induced by acrolein by mediating the JNK pathway to inhibit HDAC1-mediated oxidative stress disorder.
RESUMO
The present study evaluated the performance of some enzymatic and non-enzymatic antioxidant systems against oxidative stress for 10 to 30 d of refrigeration (R) and 15 to 50 d in controlled atmosphere (CA) conditions in both exocarp and mesocarp of Hass avocados from early and late harvests and at shelf life (SL) or consumption maturity. The possible relationship of the antioxidant systems with the occurrence of physiological disorders is also evaluated. The results indicate that the enzymatic system-superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), phenylalanine ammonium lyase (PAL) and polyphenoloxidase (PPO)-as well as the non-enzymatic system-such as phenolic compounds (PC)-showed different responses to the stress generated during storage and shelf life. In general, SOD, CAT, PAL and PPO did not significantly vary in storage (R or CA). At consumption maturity, SOD, POD and PAL activities decreased in the mesocarp (RSL and CASL), while CAT increased in the exocarp for CASL15-50d. PC instead decreased in the exocarp as the harvest period progressed while it increased in the mesocarp. Physiological disorders (dark spots) showed only in refrigeration on the exocarp at R30d and in mesocarp at RSL30d coincident with low SOD and low SOD and POD activity values, as well as low PC contents (p-coumaric and its derivatives and caffeic acid derivatives), respectively. The results support the use of CA as a postharvest technology to prevent the development of physiological disorders through the joint action of antioxidative defenses during avocado transport to distant markets until consumption maturity is reached.
RESUMO
Information on tolerance to isolated or combined abiotic stresses is still scarce for tree species, although such stresses are normal in nature. The interactive effect of light availability and water stress has been reported for some native tree species in Brazil but has not been widely investigated. To test the hypothesis that shading can mitigate the stressful effect of water deficit on the photosynthetic and antioxidant metabolism and on the growth of young Hymenaea courbaril L. plants, we evaluated the following two water regimes: a) continuous irrigation - control (I) - 75% field capacity. and b) water deficit (S), characterized by irrigation suspension associated the two following periods of evaluation: P0 - when the photosynthetic rate of plants subjected to irrigation suspension reached values ââclose to zero, with the seedlings being re-irrigated at that moment, and REC - when the photosynthetic rate of the re-irrigated plants of each shading levels reached values ââsimilar to those of plants in the control treatment, totaling four treatments: IP0, SP0, IREC, and SREC. The plants of these four treatments were cultivated under the four following shading levels: 0, 30, 50, and 70%, constituting 16 treatments. Intermediate shading of 30 and 50% mitigates the water deficit and accelerates the recovery of H. courbaril. Water deficit associated with cultivation without shading (0%) should not be adopted in the cultivation or transplantation of H. courbaril. After the resumption of irrigation in the REC, the other characteristics presented a recovery under all cultivation conditions. Key message: Intermediate shading of 30 and 50% mitigates the water deficit and accelerates the recovery of H. courbaril.
RESUMO
This study aimed to assess the combined effect of hypoxia and exposure to diesel on biochemical parameters of Perna perna mussels. Mussels previously kept for 48 h in clean seawater were submitted to hypoxia for 24 h followed by reoxygenation in clean seawater for 48 h. The same procedure was done but using seawater containing 0.01 mL/L of diesel, before and after hypoxia. Antioxidant enzymes as well as levels of glutathione and lipid peroxidation were measured in gills and digestive glands. The neutral red retention time assay was also evaluated in hemocytes. Results showed that cycles of air exposure and reoxygenation caused oxidative stress and antioxidant modulation in both the gills and digestive glands. The presence of diesel in water triggered additional modulation of antioxidants under hypoxia and reoxygenation stress, apparently enhancing the capacity of mussels to avoid lipid peroxidation.
RESUMO
2-Ketones are signal molecules reported as plant growth stimulators, but their applications in vegetables have yet to be achieved. Solid lipid nanoparticles (SLNs) emerge as a relevant nanocarrier to develop formulations for the controlled release of 2-ketones. In this sense, seedlings of Lactuca sativa exposed to 125, 375, and 500 µL L-1 of encapsulated 2-nonanone and 2-tridecanone into SLNs were evaluated under controlled conditions. SLNs evidenced a spherical shape with a size of 230 nm. A controlled release of encapsulated doses of 2-nonanone and 2-tridecanone was observed, where a greater release was observed as the encapsulated dose of the compound increased. Root development was strongly stimulated mainly by 2-tridecanone and leaf area (25-32%) by 2-nonanone. Chlorophyll content increased by 15.8% with exposure to 500 µL L-1 of 2-nonanone, and carotenoid concentration was maintained with 2-nonanone. Antioxidant capacity decreased (13-62.7%) in L. sativa treated with 2-ketones, but the total phenol concentration strongly increased in seedlings exposed to some doses of 2-ketones. 2-Tridecanone strongly modulates the enzymatic activities associated with the scavenging of H2O2 at intra- and extracellular levels. In conclusion, 2-ketones released from SLNs modulated the growth and the antioxidant system of L. sativa, depending on the dose released.
RESUMO
Peroxiredoxins (Prdxs) are thiol-dependent enzymes that scavenge peroxides. Previously, we found that Prdxs were hyperoxidized in a Parkinson's disease model induced by paraquat (PQ), which led to their inactivation, perpetuating reactive oxygen species (ROS) formation. Herein, we evaluated the redox state of the typical 2-Cys-Prx subgroup. We found that PQ induces ROS compartmentalization in different organelles, reflected by the 2-Cys-Prdx hyperoxidation pattern detected by redox eastern blotting. 2-Cys Prdxs are most vulnerable to hyperoxidation, while atypical 2-Cys Peroxiredoxin 5 (Prdx5) is resistant and is expressed in multiple organelles, such as mitochondria, peroxisomes, and cytoplasm. Therefore, we overexpressed human Prdx5 in the dopaminergic SHSY-5Y cell line using the adenoviral vector Ad-hPrdx5. Prdx5 overexpression was confirmed by western blotting and immunofluorescence (IF) and effectively decreased PQ-mediated mitochondrial and cytoplasmic ROS assessed with a mitochondrial superoxide indicator and DHE through IF or flow cytometry. Decreased ROS mediated by Prdx5 in the main subcellular compartments led to overall cell protection against PQ-induced cell death, which was demonstrated by flow cytometry using Annexin V labeling and 7-AAD. Therefore, Prdx5 is an attractive therapeutic target for PD, as its overexpression protects dopaminergic cells from ROS and death, which warrants further experimental animal studies for its subsequent application in clinical trials.