Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 324: 71-82, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32991936

RESUMO

Many researchers have limited access to fully equipped laboratory-scale batch bioreactors and chemostats due to their relatively high cost. This becomes particularly prohibitive when multiple replicas of the same experiment are required, but not enough bioreactors are available to operate simultaneously. Additionally, experiments using shaken flasks are common but show significant limitations in terms of maintaining homogeneous conditions in liquid cultures or installing instrumentation for monitoring. Here, we proposed to tackle this significant hurdle by providing a route to make available the manufacture of low-cost, milliliter-scale bioreactors. This approach seems plausible for enabling proof-of-concept experiments before moving to a larger scale without significant investments. The conceptually designed systems were based on external-loop bioreactors due to their flexibility, simplicity, and ease of assembling and testing. Designs were initially evaluated in silico with the aid of COMSOL Multiphysics. The successfully evaluated systems were then constructed via additive manufacturing and assembled for hydrodynamics testing via tracer methods. This was enabled by a newly home-made optical absorbance sensor (OAS) for in-line and real-time measurements. Both the in silico and experimental results indicated close to ideal mixing conditions and low shear stress. Cell growth curves were prepared by culturing Escherichia coli and following its cell density in real-time. Our cell growth rate and maximum cell density were similar to those previously obtained in closely related systems. Therefore, the proposed bioreactors are an affordable alternative for batch and continuous cell growth studies rapidly and inexpensively.


Assuntos
Reatores Biológicos , Hidrodinâmica , Proliferação de Células , Escherichia coli , Estresse Mecânico
2.
Appl Microbiol Biotechnol ; 101(3): 1013-1024, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27687991

RESUMO

The study had the objective of examining the aspects involved in the cultivation of ectomycorrhizal fungi for the production of commercially sustainable inoculant to attend the demands of the seedling nursery industry. It focused on certain parameters, such as the oxygen consumption levels, during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens CBMAI 1472, which was performed in a 5-L airlift bioreactor. The dynamic method was employed to determine the volumetric coefficient for the oxygen transfer (k L a) and the specific oxygen uptake rate (Q O2 ). The results indicate that specific growth rates (µ X ) and oxygen consumption decline rapidly with time, affected mainly by increases in biomass concentration (X). Increases in X are obtained primarily by increases in the size of pellets that are formed, altering, consequently, the cultivation dynamics. This is the result of natural increases in transferring resistance that are observed in these environments. Therefore, to avoid critical conditions that affect viability and the productivity of the process, particular settings are discussed.


Assuntos
Basidiomycota/crescimento & desenvolvimento , Basidiomycota/metabolismo , Reatores Biológicos , Consumo de Oxigênio , Oxigênio/metabolismo , Basidiomycota/isolamento & purificação , Biomassa , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA