Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 507: 190-199, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28787619

RESUMO

The urea derivatives, namely, ethylurea (EU), 1,3 dimethylurea (1,3-DMU) and 1,1 diethylurea (1,1-DEU), in the limiting regions of their solubilities in water, and tetramethylurea (TMU) at w≥0.65 were investigated in relation to their capacity of inducing hen egg white lysozyme (HEWL) physical (non-covalent) gelation. Protein transparent gels were generated out of TMU/H2O and 1,1-DEU/H2O, respectively, whereas an intensively turbid gel resulted from sol-gel transition taking place in EU/H2O. Oscillatory rheology revealed distinctions in the gels' structural and dynamic characteristics. Hydration patterns of the derivatives in solution, sizes of their non-polar domains and supramolecular symmetry features played a central role in their capacity of gel formation and in the gels' rheological behavior and morphology. Effects on gel characteristics of distinctively positioned ions in the Hofmeister series showed that SCN- disrupted water H-bonding interconnectivity in TMU lysozyme gel, strengthening gel structure, yet maintaining gel transparency. Citrate enhanced system elasticity albeit causing intense turbidity and leading to phase separation. Larger values of the storage modulus, G', were verified for gels generated from binary mixtures containing urea derivatives with higher dipole moments.


Assuntos
Muramidase/química , Ureia/análogos & derivados , Ureia/química , Água/química , Animais , Elasticidade , Géis , Reologia , Solubilidade , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA