Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126103

RESUMO

The formation and analysis of amyloid fibers by two ß-glucosidases, BglA and BglB, belonging to the GH1 enzyme family, are reported. Both proteins have the (ß/α)8 TIM-barrel fold, which is characteristic of this family and is also the most common protein structure. BglA is an octamer, whereas BglB is a monomer. Amyloid fibrillation using pH and temperature as perturbing agents was investigated using fluorescence spectroscopy as a preliminary approach and corroborated using wide-field optical microscopy, confocal microscopy, and field-emission scanning electron microscopy. These analyses showed that both enzymes fibrillate at a wide range of acidic and alkaline conditions and at several temperature conditions, particularly at acidic pH (3-4) and at temperatures between 45 and 65 °C. Circular dichroism spectroscopy corroborated the transition from an α-helix to a ß-sheet secondary structure of both proteins in conditions where fibrillation was observed. Overall, our results suggest that fibrillation is a rather common phenomenon caused by protein misfolding, driven by a transition from an α-helix to a ß-sheet secondary structure, that many proteins can undergo if subjected to conditions that disturb their native conformation.


Assuntos
Amiloide , Amiloide/química , Amiloide/metabolismo , Concentração de Íons de Hidrogênio , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Dicroísmo Circular , Temperatura , Estrutura Secundária de Proteína , Dobramento de Proteína
2.
Plants (Basel) ; 13(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39065508

RESUMO

Processes of water retention and movement and the hydraulic conductivity are altered in the rhizosphere. The aim of this study was to investigate the physical-hydric properties of soil aggregates in the rhizosphere of annual ryegrass (Lolium multiflorum) cropped in a Kandiudalfic Eutrudox, taking into account aspects related to soil aggregate stability. Soil aggregates from rhizosphere soil (RZS) and soil between plant rows (SBP) were used to determine soil water retention curves (SWRCs) and saturated hydraulic conductivity (Ksat). In addition, properties related to soil aggregate stability, such as water-dispersible clay, soil organic carbon (SOC), and microbial activity, were also assessed. The higher microbial activity observed in the RZS was facilitated by increased SOC and microbial activity, resulting in improved soil aggregation (less water-dispersible clay). For nearly all measured matric potentials, RZS had a higher water content than SBP. This was attributed to the stability of aggregates, increase in SOC content, and the root exudates, which improved soil water retention. The increase in total porosity in RZS was associated with improved soil aggregation, which prevents deterioration of the soil pore space and results in higher Ksat and hydraulic conductivity as a function of the effective relative saturation in RZS compared to SBP.

3.
Plants (Basel) ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611495

RESUMO

Hamelia patens (Rubiaceae), known as firebush, is a source of bioactive monoterpenoid oxindole alkaloids (MOAs) derived from monoterpenoid indole alkaloids (MIAs). With the aim of understanding the regulation of the biosynthesis of these specialized metabolites, micropropagated plants were elicited with jasmonic acid (JA) and salicylic acid (SA). The MOA production and MIA biosynthetic-related gene expression were evaluated over time. The production of MOAs was increased compared to the control up to 2-fold (41.3 mg g DW-1) at 72 h in JA-elicited plants and 2.5-fold (42.4 mg g DW-1) at 120 h in plants elicited with SA. The increment concurs with the increase in the expression levels of the genes HpaLAMT, HpaTDC, HpaSTR, HpaNPF2.9, HpaTHAS1, and HpaTHAS2. Interestingly, it was found that HpaSGD was downregulated in both treatments after 24 h but in the SA treatment at 120 h only was upregulated to 8-fold compared to the control. In this work, we present the results of MOA production in H. patens and discuss how JA and SA might be regulating the central biosynthetic steps that involve HpaSGD and HpaTHAS genes.

4.
PeerJ ; 11: e16094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818327

RESUMO

Background: The demand for lactic acid bacteria products, especially probiotics, has increased. Bacteria that increase polyphenol bioavailability and act as bio preservatives are sought after. This study aims to identify autochthonous lactic acid cultures from EMBRAPA that demonstrate ß-glucosidase activity and inhibitory effect on microbial sanitary indicators. Methods: Cell-free extracts were obtained by sonicating every 5 s for 40 min. The extracts were mixed with cellobiose and incubated at 50 °C. The reaction was stopped by immersing the tubes in boiling water. The GOD-POD reagent was added for spectrophotometer readings. Antimicrobial activity was tested against reference strains using the agar well diffusion method. Lactic cultures in MRS broth were added to 0.9 cm wells and incubated. The diameter of the inhibition zones was measured to determine the extension of inhibition. Results: Only L. rhamnosus EM1107 displayed extracellular ß-glucosidase activity, while all autochthonous strains except L. plantarum CNPC020 demonstrated intracellular activity for this enzyme. L. plantarum CNPC003 had the highest values. On the other hand, L. plantarum CNPC020, similarly to L. mucosae CNPC007, exhibited notable inhibition against sanitary indicators. These two strains significantly differed from the other five autochthonous cultures regarding S. enterica serovar Typhimurium ATCC 14028 inhibition (P < 0.05). However, they did not differ from at least one positive control in terms of inhibition against S. aureus ATCC 25923 and E. coli ATCC 25922 (P > 0.05). Therefore, it is advisable to consider these cultures separately for different technological purposes, such as phenolics metabolism or bio preservative activity. This will facilitate appropriate selection based on each specific property required for the intended product development.


Assuntos
Anti-Infecciosos , Celulases , Probióticos , Escherichia coli , Staphylococcus aureus , Probióticos/farmacologia
5.
Foods ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37761112

RESUMO

Soy isoflavones are considered important sources of bioactive compounds, but they are poorly absorbable, due to their large hydrophilic structures. Some biotransformation strategies have been used to convert the glycosidic form into aglycones, making them available for absorption. This study evaluated the potential of enzymatic and/or microbial fermentation combined bioprocesses in a soymilk extract before and after gastrointestinal in vitro digestion. Commercial ß-glucosidase (ET) and a mix of commercial probiotics (F) containing Lactobacillus acidophilus, Lactobacillus casei, Lactococcus lactis, Bifidobacterium bifidum, and Bifidobacterium lactis were used to biotransform the soymilk phenolic extract. An isoflavone profile was identified using HPLC-DAD, total phenolic content was identified using the Folin-Ciocalteu test, and antioxidant capacity was identified using ORAC and FRAP. Soymilk enzymatically treated (ET) followed by microbial fermentation (ET + T) resulted in better conversion of glycosylated isoflavones (6-fold lower than control for daidzin and 2-fold for genistin) to aglycones (18-fold greater than control for dadzein and genistein). The total phenolic content was increased (3.48 mg/mL for control and 4.48 mg/mL for ET + T) and the antioxidant capacity was improved with treatments of ET + T (120 mg/mL for control and 151 mg/mL with ORAC) and with FRAP (285 µL/mL for control and 317 µL/mL). After the in vitro digestion, ET + T samples resulted in a higher content of genistein (two-fold higher than control); also, increases in the total phenolic content (2.81 mg/mL for control and 4.03 mg/mL for ET + T) and antioxidant capacity measured with ORAC were greater compared to undigested samples. In addition, the isolated microbial fermentation process also resulted in positive effects, but the combination of both treatments presented a synergistic effect on soy-based products.

6.
Microorganisms ; 11(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110421

RESUMO

Cyanobacteria are rich sources of secondary metabolites and have the potential to be excellent industrial enzyme producers. ß-glucosidases are extensively employed in processing biomass degradation as they mediate the most crucial step of bioconversion of cellobiose (CBI), hence controlling the efficiency and global rate of biomass hydrolysis. However, the production and availability of these enzymes derived from cyanobacteria remains limited. In this study, we evaluated the ß-glucosidase from Microcystis aeruginosa CACIAM 03 (MaBgl3) and its potential for bioconversion of cellulosic biomass by analyzing primary/secondary structures, predicting physicochemical properties, homology modeling, molecular docking, and simulations of molecular dynamics (MD). The results showed that MaBgl3 derives from an N-terminal domain folded as a distorted ß-barrel, which contains the conserved His-Asp catalytic dyad often found in glycosylases of the GH3 family. The molecular docking results showed relevant interactions with Asp81, Ala271 and Arg444 residues that contribute to the binding process during MD simulation. Moreover, the MD simulation of the MaBgl3 was stable, shown by analyzing the root mean square deviation (RMSD) values and observing favorable binding free energy in both complexes. In addition, experimental data suggest that MaBgl3 could be a potential enzyme for cellobiose-hydrolyzing degradation.

7.
J Environ Manage ; 330: 117169, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621314

RESUMO

Vermicomposting is the bio-oxidation and stabilization of organic matter involving relationships between the action of earthworms and microorganisms and the activation and dynamics of several enzyme activities. Semi-arid farmers to make (extra) money and organic production, produce their vermicompost using plant residues and animal manure, but there is no information about the final product generated. Thus, this study aimed to analyze the potential of vermicomposting with mixtures of animal manure and vegetable leaves in the development of Eisenia foetida, microbial biomass, and enzymatic activity in the semi-arid region, Brazil. The experimental design applied was randomized block in a 6 × 4 factorial scheme with four replicates, with six treatments (mixtures of cattle manure, goat manure, cashew leaves, and catanduva leaves) and evaluated at four-time intervals (30, 60, 90, and 120 days of vermicomposting). The treatments were placed in polyethylene pots in the same site, environmental conditions, and residues proportions as used by farmers. The characteristics analyzed were the number of earthworms (NE), total earthworm biomass (TEB) and earthworm multiplication index (MI), microbial biomass carbon (MBC), and activities of enzymes ß-glucosidase, dehydrogenase, alkaline and acid phosphatases. The cattle manure vermicomposted shows the highest average values observed for NE, MI, TEB, MBC, and enzymatic activity, regardless of the plant leaves mix. In general, the enzymes activities were found in the descending order of ß-glucosidase > alkaline phosphatase > dehydrogenase > acid phosphatase. The maturation dynamics of vermicompost were characterized by a decline in the microbial population and number and biomass of earthworms in the substrate and consequently a decrease in new enzyme synthesis and degradation of the remaining enzyme pool. Microbial biomass and enzymatic activity were indicators for changes in the quality of vermicompost.


Assuntos
Celulases , Oligoquetos , Animais , Bovinos , Biomassa , Carbono/metabolismo , Celulases/metabolismo , Esterco , Oligoquetos/metabolismo , Oxirredutases/metabolismo , Solo , Verduras/metabolismo
8.
Proteins ; 91(2): 218-236, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36114781

RESUMO

ß-glucosidases play a pivotal role in second-generation biofuel (2G-biofuel) production. For this application, thermostable enzymes are essential due to the denaturing conditions on the bioreactors. Random amino acid substitutions have originated new thermostable ß-glucosidases, but without a clear understanding of their molecular mechanisms. Here, we probe by different molecular dynamics simulation approaches with distinct force fields and submitting the results to various computational analyses, the molecular bases of the thermostabilization of the Paenibacillus polymyxa GH1 ß-glucosidase by two-point mutations E96K (TR1) and M416I (TR2). Equilibrium molecular dynamic simulations (eMD) at different temperatures, principal component analysis (PCA), virtual docking, metadynamics (MetaDy), accelerated molecular dynamics (aMD), Poisson-Boltzmann surface analysis, grid inhomogeneous solvation theory and colony method estimation of conformational entropy allow to converge to the idea that the stabilization carried by both substitutions depend on different contributions of three classic mechanisms: (i) electrostatic surface stabilization; (ii) efficient isolation of the hydrophobic core from the solvent, with energetic advantages at the solvation cap; (iii) higher distribution of the protein dynamics at the mobile active site loops than at the protein core, with functional and entropic advantages. Mechanisms i and ii predominate for TR1, while in TR2, mechanism iii is dominant. Loop A integrity and loops A, C, D, and E dynamics play critical roles in such mechanisms. Comparison of the dynamic and topological changes observed between the thermostable mutants and the wildtype protein with amino acid co-evolutive networks and thermostabilizing hotspots from the literature allow inferring that the mechanisms here recovered can be related to the thermostability obtained by different substitutions along the whole family GH1. We hope the results and insights discussed here can be helpful for future rational approaches to the engineering of optimized ß-glucosidases for 2G-biofuel production for industry, biotechnology, and science.


Assuntos
Biocombustíveis , beta-Glucosidase , beta-Glucosidase/genética , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Substituição de Aminoácidos , Simulação de Dinâmica Molecular , Domínio Catalítico
9.
Enzyme Microb Technol ; 163: 110155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399934

RESUMO

ß-glucosidases (E.C. 3.2.1.21) are enzymes that hydrolyze ß-1,4-glycosidic bonds from non-reducing terminal residues in ß-D-glucosides, with the release of glucose. ß-glucosidases currently used for the saccharification of lignocellulosic biomass have low efficiency in hydrolyzing cellobiose and are inhibited by glucose, contrary to what would be desirable. In this work, we engineered Pichia pastoris strains to produce the ß-glucosidase Glu1B from the termite Coptotermes formosanus, and biochemically characterized the recombinant enzyme. After 36 h of methanol induction in shake flasks, the P. pastoris KM71BGlu strain produced and secreted 4.1 U/mL (approx. 26 mg/L) of N-glycosylated ß-glucosidase Glu1B. The recombinant product had an optimum pH of 5.0, optimum temperature of 50 °C, residual activity at 40 °C higher than 80 %, specific activity toward cellobiose of 431-597 U/mg protein, and a Ki for glucose of 166 mM. The protein structure was stabilized by Mn2+ and glycerol. The high specific activity of the recombinant ß-glucosidase Glu1B was correlated with the presence of specific residues in the glycone (Gln455) and aglycone (Thr193 and Hys252) binding sites, along with linker residues (Leu192, Ile251, and Phe333) between residues of these two sites. Moreover, the resistance to inhibition by glucose was correlated with the presence of specific gatekeeper residues in the active site (Met204, Gln360, Ala368, Ser369, Ser370, Leu450, and Arg451). Based on its biochemical properties and the possibility of its production in the P. pastoris expression system, the ß-glucosidase produced and described in this work could be suitable as a supplement in the enzymatic hydrolysis of cellulose for saccharification of lignocellulosic biomass.


Assuntos
Isópteros , beta-Glucosidase , Animais , beta-Glucosidase/química , Celobiose/metabolismo , Isópteros/metabolismo , Pichia/metabolismo , Especificidade por Substrato , Cinética , Glucose/metabolismo
10.
Prep Biochem Biotechnol ; 53(3): 297-307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35671239

RESUMO

Enzyme immobilization has been reported as a promising approach to improving parameters such as thermal stability, pH and reusability. In this study, a polyacrylamide cryogel functionalized with L-phenylalanine was prepared to be used in the adsorption of ß-glucosidase from Thermoascus aurantiacus, aiming at its separation and also its immobilization on the cryogel matrix. The enzyme was produced by solid state fermentation. First, the adsorption was studied as a function of the pH and the resulting yield (Y, %) and purification factor (PF, dimensionless) were determined (1.57-5.13 and 64.19-91.20, respectively). The PF and yield from eluate samples obtained at pH 3.0 were the highest (5.13 and 91.20, respectively). Then, ß-glucosidase was immobilized on the hydrophobic cryogel and the recovery activities (%) were determined as a function of temperature and in the presence of different saline solutions. The values ranged from 14.45 to 45.97. As expected, salt type and ionic strength affected the activity remained in the immobilized ß-glucosidase. The average bioreactor activity was 39.9 U/g of dry cryogel and its operational stability was measured, with no decrease in activity being observed during seven cycles. Kinetic parameters of free and immobilized enzyme were determined according to different models.


Assuntos
Criogéis , Thermoascus , Criogéis/química , Adsorção , beta-Glucosidase/química , Enzimas Imobilizadas/química , Interações Hidrofóbicas e Hidrofílicas , Concentração de Íons de Hidrogênio
11.
Protein J ; 41(2): 274-292, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438380

RESUMO

ß-Glucosidase is widely used in several industrial segments, among which we can highlight the pharmaceutical industry, beverages, biofuels, animal feed production, and the textile industry. The great applicability of this enzyme, associated with the high cost of its production, justifies the need to find ways to make its use economically viable on an industrial scale. Through enzyme immobilization, the biocatalyst can be reused more than once, without great impact on its catalytic activity, and higher operational and storage stabilities can be achieved as compared to the free form. Accordingly, this review brings information about different techniques and supports that have been studied in the immobilization of cellulases with a focus on ß-glucosidase, as well as the application of these immobilized systems to supplement commercial mixtures.


Assuntos
Enzimas Imobilizadas , beta-Glucosidase , Biocombustíveis , Estabilidade Enzimática
12.
Protein Expr Purif ; 190: 106009, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34742914

RESUMO

The enzymatic conversion of lignocellulosic biomass to fermentable sugars is determined by the enzymatic activity of cellulases; consequently, improving enzymatic activity has attracted great interest in the scientific community. Cocktails of commercial cellulase often have low ß-glucosidase content, leading to the accumulation of cellobiose. This accumulation inhibits the activity of the cellulolytic complex and can be used to determine the enzymatic efficiency of commercial cellulase cocktails. Here, a novel codon optimized ß-glucosidase gene (B-glusy) from Trichoderma reesei QM6a was cloned and expressed in three strains of Escherichia coli (E. coli). The synthetic sequence containing an open reading frame (ORF) of 1491 bp was used to encode a polypeptide of 497 amino acid residues. The ß-glucosidase recombinant protein that was expressed (57 kDa of molecular weight) was purified by Ni agarose affinity chromatography and visualized by SDS-PAGE. The recombinant protein was better expressed in E. coli BL21 (DE3), and its enzymatic activity was higher at neutral pH and 30 °C (22.4 U/mg). Subsequently, the ß-glucosidase was immobilized using magnetite nano-support, after which it maintained >65% of its enzymatic activity from pH 6 to 10, and was more stable than the free enzyme above 40 °C. The maximum immobilization yield had enzyme activity of 97.2%. In conclusion, ß-glucosidase is efficiently expressed in the microbial strain E. coli BL21 (DE3) grown in a simplified culture medium.


Assuntos
Enzimas Imobilizadas , Escherichia coli , Proteínas Fúngicas , Expressão Gênica , Hypocreales/genética , Nanopartículas de Magnetita/química , beta-Glucosidase , Estabilidade Enzimática , Enzimas Imobilizadas/biossíntese , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Hypocreales/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , beta-Glucosidase/biossíntese , beta-Glucosidase/química , beta-Glucosidase/genética , beta-Glucosidase/isolamento & purificação
13.
Ciênc. rural (Online) ; 52(3): e20200532, 2022. graf, ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1369607

RESUMO

This research evaluated the effects of coffee cultivation with two different water regimes associated or not with liming and the presence/absence of brachiaria as intercrop on the activities of the soil enzymes ß-glucosidase, arylsulfatase and acid phosphatase. The study was carried out at the experimental farm of Embrapa Cerrados, using the cultivar IAC 144 (Coffea arabica L.), under a clayey dystrophic Cerrado Oxisol. Two water regimes (WR) were considered, WR1 with irrigation shifts throughout the year and WR3 with controlled water stress, for about 70 days, in the dry season. In each water regime, effects of lime application (with/without) and the presence/absence of brachiaria cultivated between the lines of coffee plants were evaluated. The activities of the enzymes ß-glucosidase, arylsulfatase and acid phosphatase were evaluated during the rainy and dry seasons. Liming and intercropped brachiaria positively affected the activities of the three enzymes assessed in this study at varying degrees, depending on season and/or the WR. Our findings evidenced that intercropped brachiaria in coffee rows was the factor that most positively impacted soil enzymes activities.


O objetivo desse trabalho foi avaliar os efeitos do cultivo do café sobre a atividade das enzimas do solo ß-glicosidase, arilsulfatase e fosfatase ácida em função de dois diferentes regimes hídricos associados ou não à calagem e ao cultivo de braquiária nas entrelinhas. Esse estudo foi realizado em um experimento conduzido no campo experimental do Centro de Pesquisa Agropecuária dos Cerrados, utilizando a cultivar IAC 144 (Coffea arabica L.), sob um Latossolo Vermelho distrófico argiloso. Foram considerados dois regimes hídricos (RH), RH1 com irrigação plena em turnos de rega ao longo do ano e RH3 com estresse hídrico controlado, por cerca de 70 dias, na época seca. Em cada regime hídrico foram avaliadas a aplicação ou não de calcário em cobertura e a presença ou ausência de braquiária cultivada nas entrelinhas das plantas do cafezal. As atividades das enzimas ß-glicosidase, arilsulfatase e fosfatase ácida foram avaliadas durante as estações chuvosa e seca. A calagem e a presença de braquiária nas entrelinhas tiveram efeito positivo sobre a atividade das três enzimas avaliadas nesse estudo, em graus variáveis, dependendo da época de coleta das amostras e/ou do RH. Nossos resultados evidenciam que a braquiária nas entrelinhas do café foi o fator de maior impacto positivo sobre a atividade enzimática do solo.


Assuntos
Arilsulfatases/análise , Fosfatase Ácida/análise , Acidez do Solo/análise , Coffea , Glicosídeo Hidrolases/análise , Brachiaria
14.
Braz J Microbiol ; 52(4): 2193-2204, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34536217

RESUMO

Enzyme activities (EAs) and the FERTBIO sample concept have been increasingly adopted as a novel approach to estimate the soil quality in Brazil. However, the performance of this strategy in sandy soils of the Cerrado biome remains unclear. During 2 years, in a Cerrado's sandy soil, the short-term effects of ten different cropping systems (conventional tillage or no-tillage associated with monoculture, rotations, and/or successions) on the activities of ß-glucosidase, acid phosphatase, and arylsulfatase were studied. Issues related to annual variability and the feasibility of using the FERTBIO sample concept for soil enzymes activities were also evaluated. Soil samples were collected at three different depths (0-10 cm, 10-20 cm, and 20-40 cm) in March 2017 and February 2018. Five years since the beginning of the experiment, the presence of cover crops and no-till promoted improvements in EAs evidencing the importance of regenerative management practices for the sustainability of agroecosystems in sandy soils. Regardless of the cropping systems and depths evaluated, soil organic carbon and EAs showed low temporal variation during the 2 years of monitoring. Our results also showed that it is possible to use the FERTBIO sample concept for the Quartzipsament soils of Western Bahia, Brazil.


Assuntos
Agricultura , Enzimas , Areia , Microbiologia do Solo , Brasil , Carbono/análise , Enzimas/metabolismo , Areia/microbiologia , Fatores de Tempo
15.
Braz J Microbiol ; 52(4): 2287-2298, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34449069

RESUMO

Soy isoflavone glycoside cannot be effectively absorbed by the human intestinal tract, but probiotics with related hydrolases can transform it into aglycone to promote its absorption. In this study, a novel flavonoid-enriched yogurt was developed using an isolated ß-glucosidase-producing strain (Lactiplantibacillus plantarum GY). The flavonoid aglycone-enhanced yogurt was fed to ICR mice for 21 days, and its effects were observed. The yogurt can affect the gut microbial diversity of mice, especially increasing the abundance of Parasutterella, the Bacteroidales S24-7 group, and Phascolarctobacterium in the intestinal tract of mice. Meanwhile, the ratio of Bacteroidetes/Firmicutes in the intestinal tract of mice fed with the flavonoid aglycone-enriched yogurt increased. The difference in the content of butyric acid between the L-GY + IS and the control groups was significant (P < 0.05). Therefore, milk fermentation with ß-glucosidase-producing strains is a promising approach for developing flavonoid glycoside-enriched yogurt products.


Assuntos
Biodiversidade , Flavonoides , Microbioma Gastrointestinal , Probióticos , Iogurte , Animais , Celulases , Fezes/microbiologia , Flavonoides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glicosídeos , Camundongos , Camundongos Endogâmicos ICR , Iogurte/microbiologia
16.
Microorganisms ; 9(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34442672

RESUMO

Microalgae and cyanobacteria are good sources for prospecting metabolites of biotechnological interest, including glucosidase inhibitors. These inhibitors act on enzymes related to various biochemical processes; they are involved in metabolic diseases, such as diabetes and Gaucher disease, tumors and viral infections, thus, they are interesting hubs for the development of new drugs and therapies. In this work, the screening of 63 environmental samples collected in the Brazilian Amazon found activity against ß-glucosidase, of at least 60 min, in 13.85% of the tested extracts, with Synechococcus sp. GFB01 showing inhibitory activity of 90.2% for α-glucosidase and 96.9% against ß-glucosidase. It was found that the nutritional limitation due to a reduction in the concentration of sodium nitrate, despite not being sufficient to cause changes in cell growth and photosynthetic apparatus, resulted in reduced production of α and ß-glucosidase inhibitors and differential protein expression. The proteomic analysis of cyanobacteria isolated from the Amazon is unprecedented, with this being the first work to evaluate the protein expression of Synechococcus sp. GFB01 subjected to nutritional stress. This evaluation helps to better understand the metabolic responses of this organism, especially related to the production of inhibitors, adding knowledge to the industrial potential of these cyanobacterial compounds.

17.
Mycologia ; 113(5): 877-890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34251997

RESUMO

C4 grasses are common species in rangelands around the world and represent an attractive option for second-generation biofuel production. Although they display high polysaccharide content and reach great levels of biomass accumulation, there is a major technical issue to be addressed before they can be used for bioethanol industrial production: lignin removal. Concerning this, Pycnoporus and Ganoderma fungal genera have been highlighted due to their ability to hydrolyze lignocellulose in biological pretreatments. Our goals here were to evaluate the pretreatment efficiency using the secretome of species from Pycnoporus and Ganoderma spp. harvested from a glucose-free inductive medium (using a C4 grass) and to identify the fungal enzymatic activities responsible for the lignin degradation and glucose release. Our results show that P. sanguineus secretome exhibits a higher activity of lignocellulolytic enzymes such as cellulases, xylanases, laccases, and manganese peroxidases compared with that from G. resinaceum. Interestingly, zymograms in the presence of 2 M glucose suggest that a ß-glucosidase isoform from P. sanguineus could be glucose tolerant. The proteomic approach carried out allowed the identification of 73 and 180 different proteins in G. resinaceum and P. sanguineus secretomes, respectively, which were functionally classified in five main categories and a miscellaneous group. These results open new avenues for future experimental work that lead to a deeper comprehension and a greater application of the mechanisms underlying lignocellulosic biomass degradation.


Assuntos
Ganoderma , Panicum , Biomassa , Celulose , Proteínas Fúngicas , Fungos , Lignina , Polyporaceae , Proteômica
18.
Colloids Surf B Biointerfaces ; 203: 111761, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33872829

RESUMO

In this study, surficial interactions of glutaraldehyde (GA) as an important crosslinker agent with the ß-glucosidase (BGL) enzyme surface were investigated by theoretical methods. Since the inherent constraints of experimental methods limit their application to find the molecular perspective of these significant interactions in enzyme immobilization, theoretical methods were used as a complementary tool to understand this concept. The Minnesota density functional calculations showed that the chair conformations of the oxane-2,6-diol form of the GA were more stable than its free aldehyde form. MD simulations of propylamine-GA molecules, as a representative of attached-GA, in aqueous solutions of different concentrations were done to determine the molecular basis of surficial interactions with the BGL surface. The root mean square fluctuation (RMSF) demonstrated that the maximum flexibility of the BGL enzyme belonged to 460-480 residues in all solutions. Based on the spatial distribution function (SDF) analysis, the active site entrance was the most favored region to accumulate solute molecules. Radial distribution function (RDF) results showed that all forms of propylamine-GA molecules interacted from their head side with the lysine residues of BGL, which Lys247, Lys376, and Lys384 were found to be the most interactive lysine residues. Also, hydrogen bond (HB) analysis from two viewpoints confirmed HB formation possibility between propylamine-GA molecules and these lysine residues. These results explained which regions of the BGL have the maximum possibility to interact and link to GA and help us in understanding the process of enzyme immobilization.


Assuntos
Simulação de Dinâmica Molecular , beta-Glucosidase , Domínio Catalítico , Ligação de Hidrogênio , Água , beta-Glucosidase/metabolismo
19.
Biochem Biophys Rep ; 26: 100965, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33732903

RESUMO

ß-Glucosidases are enzymes present in all living organisms, playing a pivotal role in diverse biological processes. These enzymes cleave ß-glycosidic bonds between carbohydrates, or between a carbohydrate and a non-carbohydrate moiety, which may result in the liberation of volatile aglycones. Released compounds execute diverse physiological roles, while the industry takes advantage of exogenously added ß-glucosidases for aroma enrichment during food and beverage production. ß-Glucosidase enzymatic activity has been reported in human saliva and given the fact that these enzymes are involved in aroma release, we investigated here the correlation between ß-glucosidase activity in human saliva and the occurrence of halitosis. Measurement of salivary enzyme activity of 48 volunteers was performed using p-nitrophenyl-ß-d-glucopyranoside as substrate. Each volunteer was clinically evaluated by a dental surgeon and clinical and laboratorial data were statistically analyzed. Gas-chromatography of saliva headspace allowed the analysis of the direct role of exogenous ß-glucosidase on aromatic /volatile profile of saliva samples. The data demonstrated a positive correlation between halitosis and enzymatic activity, suggesting that the enzyme exerts a direct role in the occurrence of bad breath. Gas-chromatography analysis demonstrated that exogenously added enzyme led to the alteration of volatile organic content, confirming a direct contribution of ß-glucosidase activity on saliva volatile compounds release. Although halitosis is a multifactorial condition, the complete understanding of all governing factors may allow the development of more effective treatment strategies. Such studies may pave the way to the use of ß-glucosidase inhibitors for halitosis clinical management.

20.
BMC Biotechnol ; 21(1): 26, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757473

RESUMO

BACKGROUND: The production of agricultural wastes still growing as a consequence of the population growing. However, the majority of these residues are under-utilized due their chemical composition, which is mainly composed by cellulose. Actually, the search of cellulases with high efficiency to degrade this carbohydrate remains as the challenge. In the present experiment, two genes encoding an endoglucanase (EC 3.2.1.4) and ß-glucosidase (EC 3.2.1.21) were overexpressed in Escherichia coli and their recombinant enzymes (egl-FZYE and cel-FZYE, respectively) characterized. Those genes were found in Trabulsiella odontermitis which was isolated from the gut of termite Heterotermes sp. Additionally, the capability to release sugars from agricultural wastes was evaluated in both enzymes, alone and in combination. RESULTS: The results have shown that optimal pH was 6.0 and 6.5, reaching an activity of 1051.65 ± 47.78 and 607.80 ± 10.19 U/mg at 39 °C, for egl-FZYE and cel-FZYE, respectively. The Km and Vmax for egl-FZYE using CMC as substrate were 11.25 mg/mL and 3921.57 U/mg, respectively, whereas using Avicel were 15.39 mg/mL and 2314.81 U/mg, respectively. The Km and Vmax for cel-FZYE using Avicel as substrate were 11.49 mg/mL and 2105.26 U/mg, respectively, whereas using CMC the enzyme did not had activity. Both enzymes had effect on agricultural wastes, and their effect was improved when they were combined reaching an activity of 955.1 ± 116.1, 4016.8 ± 332 and 1124.2 ± 241 U/mg on corn stover, sorghum stover and pine sawdust, respectively. CONCLUSIONS: Both enzymes were capable of degrading agricultural wastes, and their effectiveness was improved up to 60% of glucose released when combined. In summary, the results of the study demonstrate that the recombinant enzymes exhibit characteristics that indicate their value as potential feed additives and that the enzymes could be used to enhance the degradation of cellulose in the poor-quality forage generally used in ruminant feedstuffs.


Assuntos
Celulases/química , Enterobacteriaceae/enzimologia , Eliminação de Resíduos/métodos , Resíduos/análise , Agricultura , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Celulases/genética , Celulases/metabolismo , Celulose/metabolismo , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Enterobacteriaceae/química , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Estabilidade Enzimática , Isópteros/microbiologia , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA