Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Stat ; 49(1): 98-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707794

RESUMO

In this paper, we propose the MulticlusterKDE algorithm applied to classify elements of a database into categories based on their similarity. MulticlusterKDE is centered on the multiple optimization of the kernel density estimator function with multivariate Gaussian kernel. One of the main features of the proposed algorithm is that the number of clusters is an optional input parameter. Furthermore, it is very simple, easy to implement, well defined and stops at a finite number of steps and it always converges regardless of the data set. We illustrate our findings by implementing the algorithm in R software. The results indicate that the MulticlusterKDE algorithm is competitive when compared to K-means, K-medoids, CLARA, DBSCAN and PdfCluster algorithms. Features such as simplicity and efficiency make the proposed algorithm an attractive and promising research field that can be used as basis for its improvement and also for the development of new density-based clustering algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA