Your browser doesn't support javascript.
loading
MulticlusterKDE: a new algorithm for clustering based on multivariate kernel density estimation.
Scaldelai, D; Matioli, L C; Santos, S R; Kleina, M.
Afiliação
  • Scaldelai D; Colegiado de Matemática, Universidade Estadual do Paraná - Unespar, Campo Mourão, Brazil.
  • Matioli LC; Departamento de Matemática, Universidade Federal do Paraná - UFPR, Curitiba, Brazil.
  • Santos SR; Colegiado de Matemática, Universidade Estadual do Paraná - Unespar, Campo Mourão, Brazil.
  • Kleina M; Departamento de Engenharia de Produção, Universidade Federal do Paraná - UFPR, Curitiba, Brazil.
J Appl Stat ; 49(1): 98-121, 2022.
Article em En | MEDLINE | ID: mdl-35707794
In this paper, we propose the MulticlusterKDE algorithm applied to classify elements of a database into categories based on their similarity. MulticlusterKDE is centered on the multiple optimization of the kernel density estimator function with multivariate Gaussian kernel. One of the main features of the proposed algorithm is that the number of clusters is an optional input parameter. Furthermore, it is very simple, easy to implement, well defined and stops at a finite number of steps and it always converges regardless of the data set. We illustrate our findings by implementing the algorithm in R software. The results indicate that the MulticlusterKDE algorithm is competitive when compared to K-means, K-medoids, CLARA, DBSCAN and PdfCluster algorithms. Features such as simplicity and efficiency make the proposed algorithm an attractive and promising research field that can be used as basis for its improvement and also for the development of new density-based clustering algorithms.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Appl Stat Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Appl Stat Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido