RESUMO
The introduction of optimized nanoheaters, which function as theranostic agents integrating both diagnostic and therapeutic processes, holds significant promise in the medical field. Therefore, developing strategies for selecting and utilizing optimized plasmonic nanoheaters is crucial for the effective use of nanostructured biomedical agents. This work elucidates the use of the Joule number (Jo) as a figure of merit to identify high-performance plasmonic theranostic agents. A framework for optimizing metallic nanoparticles for heat generation was established, uncovering the size dependence of plasmonic nanoparticles optical heating. Gold nanospheres (AuNSs) with a diameter of 50 nm and gold nanorods (AuNRs) with dimensions of 41×10 nm were identified as effective nanoheaters for visible (530 nm) and infrared (808 nm) excitation. Notably, AuNRs achieve higher Jo values than AuNSs, even when accounting for the possible orientations of the nanorods. Theoretical results estimate that 41×10 nm gold nanorods have an average Joule number of 80, which is significantly higher compared to larger rods. The photothermal performance of optimal and suboptimal nanostructures was evaluated using photoacoustic imaging and photothermal therapy procedures. The photoacoustic images indicate that, despite having larger absorption cross-sections, the large nanoparticle volume of bigger particles leads to less efficient conversion of light into heat, which suggests that the use of optimized nanoparticles promotes higher contrast, benefiting photoacoustic-based procedures in diagnostic applications. The photothermal therapy procedure was performed on S180-bearing mice inoculated with 41×10 nm and 90×25 nm PEGylated AuNRs. Five minutes of laser irradiation of tumor tissue with 41×10 nm produced an approximately 9.5% greater temperature rise than using 90×25 AuNRs in the therapy trials. Optimizing metallic nanoparticles for heat generation may reduce the concentration of the nanoheaters used or decrease the light fluence for bioscience applications, paving the way for the development of more economical theranostic agents.
RESUMO
Parkinson's disease (PD) induced by environmental toxins involves a multifactorial cascade of harmful factors, thus motivating the search for therapeutic agents able to act on the greatest number of molecular targets. This study evaluated the efficacy of 50 mg/kg purified anacardic acids (AAs), isolated from cashew nut shell liquid, on multiple steps of oxidative stress and inflammation induced by rotenone in the substantia nigra (SN) and striatum. Adult mice were divided into four groups: Control, rotenone, AAs + rotenone, and AAs alone. Lipoperoxidation, nitric oxide (NO) levels, and reduced glutathione (GSH)/oxidized gluthatione (GSSG) ratio were evaluated. NF-kB-p65, pro-IL-1ß, cleaved IL-1ß, metalloproteinase-9, Tissue Inhibitory Factor-1 (TIMP-1), tyrosine hydroxylase (TH), and glial fibrillary acidic protein (GFAP) levels were assessed by Western blot. In silico studies were also made using the SwissADME web tool. Rotenone increased lipoperoxidation and NO production and reduced TH levels and GSH/GSSG ratio in both SN and striatum. It also enhanced NF-kB-p65, pro, and cleaved IL-1ß, MMP-9, GFAP levels compared to control and AAs groups. The AAs alone reduced pro-IL-1ß in the striatum while they augmented TIMP1 and reduced MMP-9 amounts in both regions. AAs reversed rotenone-induced effects on lipoperoxidation, NO production, and GSH/GSSG ratio, as well as increased TH and attenuated pro-IL-1ß and MMP-9 levels in both regions, NF-kB-p65 in the SN and GFAP in the striatum. Altogether, the in vivo and in silico analysis reinforced multiple and defined molecular targets of AAs, identifying that they are promising neuroprotective drug candidates for PD, acting against oxidative and inflammatory conditions induced by rotenone.
Assuntos
Ácidos Anacárdicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Praguicidas/toxicidade , Ácidos Anacárdicos/química , Ácidos Anacárdicos/isolamento & purificação , Animais , Simulação por Computador , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteína Glial Fibrilar Ácida/genética , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Interleucina-1beta/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Metaloproteinase 9 da Matriz/genética , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/patologia , Inibidor Tecidual de Metaloproteinase-1/genética , Fator de Transcrição RelA/genética , Tirosina 3-Mono-Oxigenase/genéticaRESUMO
In this work we have investigated the effects of vitamins C and E on tumors via the mice xenotransplant model of sarcoma 180 (S180) in vivo. The experimental results suggest that dosages of 100 mg/kg vitamin C and 400 mg/kg vitamin E yields a great inhibitory behavior on tumors.
RESUMO
Two series of 5 and 6-substituted 1,3-benzodioxole peptidyl derivatives were synthesized and evaluated as antitumour and antimicrobial agents. The compounds that could be conveniently prepared in a few steps processes from natural safrole have been characterised by IR and 1H-NMR spectroscopy. In vivo antitumor activity tests showed that some of the compounds were able to inhibit carcinoma S-180 tumour growth in mice. The in vitro antimicrobial activity of all compounds revealed that they are able to promote the growth of some organisms, including Bacillus subtilis.