Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev Bras Parasitol Vet ; 30(2): e002221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076049

RESUMO

This study reports the action of essential oils (EO) from five plants on the activity of native and recombinant acetylcholinesterases (AChE) from Rhipicephalus microplus. Enzyme activity of native susceptible AChE extract (S.AChE), native resistant AChE extract (R.AChE), and recombinant enzyme (rBmAChE1) was determined. An acetylcholinesterase inhibition test was used to verify the effect of the EO on enzyme activity. EO from Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var.dulcis inhibited the activity of S.AChE and R.AChE. Oils from the two Citrus species inhibited S.AChE and R.AChE in a similar way while showing greater inhibition on R.AChE. The oil from E. globulus inhibited native AChE, but no difference was observed between the S.AChE and R.AChE; however, 71% inhibition for the rBmAChE1 was recorded. Mentha piperita oil also inhibited S.AChE and R.AChE, but there was significant inhibition at the highest concentration tested. Cymbopogon winterianus oil did not inhibit AChE. Further studies are warranted with the oils from the two Citrus species that inhibited R.AChE because of the problem with R. microplus resistant to organophosphates, which target AChE. C. winterianus oil can be used against R. microplus populations that are resistant to organophosphates because its acaricidal properties act by mechanism(s) other than AChE inhibition.


Assuntos
Acaricidas , Inibidores da Colinesterase/farmacologia , Cymbopogon , Óleos Voláteis , Rhipicephalus/enzimologia , Acaricidas/farmacologia , Acetilcolinesterase , Animais , Larva , Óleos Voláteis/farmacologia
2.
Rev. bras. parasitol. vet ; 30(2): e002221, 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1251367

RESUMO

Abstract This study reports the action of essential oils (EO) from five plants on the activity of native and recombinant acetylcholinesterases (AChE) from Rhipicephalus microplus. Enzyme activity of native susceptible AChE extract (S.AChE), native resistant AChE extract (R.AChE), and recombinant enzyme (rBmAChE1) was determined. An acetylcholinesterase inhibition test was used to verify the effect of the EO on enzyme activity. EO from Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var.dulcis inhibited the activity of S.AChE and R.AChE. Oils from the two Citrus species inhibited S.AChE and R.AChE in a similar way while showing greater inhibition on R.AChE. The oil from E. globulus inhibited native AChE, but no difference was observed between the S.AChE and R.AChE; however, 71% inhibition for the rBmAChE1 was recorded. Mentha piperita oil also inhibited S.AChE and R.AChE, but there was significant inhibition at the highest concentration tested. Cymbopogon winterianus oil did not inhibit AChE. Further studies are warranted with the oils from the two Citrus species that inhibited R.AChE because of the problem with R. microplus resistant to organophosphates, which target AChE. C. winterianus oil can be used against R. microplus populations that are resistant to organophosphates because its acaricidal properties act by mechanism(s) other than AChE inhibition.


Resumo Este estudo relata a ação de óleos essenciais de cinco plantas na atividade de acetilcolinesterases (AChE) nativas e recombinantes de Rhipicephalus microplus. A atividade enzimática do extrato de acetilcolinesterase nativa suscetível (S.AChE) e resistente (R.AChE) e da enzima recombinante (rBmAChE1) foi determinada. Um teste de inibição da AChE foi utilizado, para verificar o efeito dos óleos essenciais sobre a atividade enzimática. Óleos essenciais de Eucalyptus globulus, Citrus aurantifolia, Citrus aurantium var. dulcis inibiram a atividade de S.AChE e R.AChE. Os óleos das duas espécies de Citrus inibiram S.AChE e R.AChE de maneira semelhante, mas mostraram maior inibição sobre R.AChE. O óleo de E. globulus inibiu a AChE nativa, mas sem diferença entre a S.AChE e a R.AChE; no entanto, 71% de inibição para rBmAChE1 foi observada. O óleo de Mentha piperita também inibiu S.AChE e R.AChE, mas houve inibição significativa apenas nas concentrações mais altas testadas. O óleo de Cymbopogon winterianus não inibiu a AChE. Estudos adicionais são necessários com os óleos das duas espécies de Citrus que inibiram a R.AchE, devido ao problema de R. microplus resistente aos organofosforados ter como alvo AChE. O óleo de C. winterianus pode ser usado contra populações de R. microplus, que são resistentes a organofosforados, porque suas propriedades acaricidas agem por mecanismos diferentes.


Assuntos
Animais , Óleos Voláteis/farmacologia , Inibidores da Colinesterase/farmacologia , Cymbopogon , Rhipicephalus/enzimologia , Acaricidas/farmacologia , Acetilcolinesterase , Larva
3.
Vet Parasitol ; 280: 109090, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32208306

RESUMO

The Rhipicephalus (Boophilus) microplus tick is the main ectoparasite of cattle in tropical and subtropical regions worldwide. Resistance to chemical acaricides has become widespread affirming the need for new drugs to tick control. Terpenes have become a promising alternative for cattle tick control, however the mechanism of action of these compounds is still controversial. Inhibition of acetylcholinesterase (AChE) is a well established mechanism of action of organophosphate and carbamate acaricides, but the possible action of terpenes on tick AChEs has seldom been studied in resistant and sensitive strains of R. (B.) microplus. The aim of the present study was to evaluate terpene inhibition of AChE from resistant and sensitive strains of R. (B.) microplus in correlation with their acaricidal activity. Among the terpenes used in the present study, p-cymene, thymol, carvacrol, and citral displayed acaricidal activity with LC50 of 1.75, 1.54, 1.41, and 0.38 mg.mL-1 for the susceptible strain, and LC50 of 1.40, 1.81, 1.10, and 1.13 mg.mL-1 for the resistant strain. Thymol and carvacrol inhibited the AChE of the susceptible strain larvae with IC50 of 0.93 and 0.04 mg.mL-1, respectively. The IC50 exhibited by eucalyptol, carvacrol and thymol for AChE of the resistant strain larvae were 0.36, 0.28, and 0.13 mg.mL-1, respectively. This was the first study to investigate the action of terpenes on AChE from susceptible and resistant R. (B.) microplus. As not all terpenes with acaridical activity showed AChE inhibition, the participation of AChE in the acaricidal activity of terpenes needs further investigation.


Assuntos
Acaricidas , Inibidores da Colinesterase , Rhipicephalus , Terpenos , Controle de Ácaros e Carrapatos , Animais , Feminino , Larva/crescimento & desenvolvimento , Rhipicephalus/crescimento & desenvolvimento
4.
J Med Entomol ; 49(3): 555-62, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22679862

RESUMO

ABSTRACT Acetylcholinesterase cDNAs, BmAChE1, BmAChE2, and BmAChE3 of Rhipicephalus (Boophilus) microplus (Canestrini) were sequenced and found to exhibit significant polymorphism. A portion of the predicted amino acid substitutions in BmAChE1, BmAChE2, and BmAChE3 were found predominantly in organophosphate-resistant strains, but most did not correlate with resistant status. Multiple transcripts were observed from individual ticks, suggesting possible gene duplication or alternative splicing to produce more than two transcripts per individual. BmAChE1 transcript polymorphisms associating with organophosphate-resistant status in laboratory strains were surveyed in laboratory and Mexican strains of R. microplus by sequencing BmAChE1 genomic DNA. Quantitative real-time polymerase chain reaction was used to determine copy numbers of BmAChE1 (eight copies/haploid genome), BmAChE2 (16 copies/haploid genome), and BmAChE3 (four copies/haploid genome). Presence of at least three highly polymorphic amplified genes expressing AChE in tick synganglion suggested that ticks maintain a large and diverse assortment of AChE alleles available for rapid recombination and selection, which potentially reduces fitness costs associated with individual mutations. Elevated copy numbers for each of the BmAChEs may also explain previous failures to identify mutations resulting in insensitivity to organophosphates. It is clear that development of phenotypic resistance to organophosphates is highly complex and may be multigenic in character.


Assuntos
Acetilcolinesterase/genética , Resistência a Inseticidas/genética , Inseticidas , Organofosfatos , Rhipicephalus/genética , Acetilcolinesterase/metabolismo , Animais , Bovinos , Dosagem de Genes , Genótipo , México , Polimorfismo Genético , Rhipicephalus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA