Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 29(8): 1534-1549, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32243630

RESUMO

Most emerging pathogens can infect multiple species, underlining the importance of understanding the ecological and evolutionary factors that allow some hosts to harbour greater infection prevalence and share pathogens with other species. However, our understanding of pathogen jumps is based primarily around viruses, despite bacteria accounting for the greatest proportion of zoonoses. Because bacterial pathogens in bats (order Chiroptera) can have conservation and human health consequences, studies that examine the ecological and evolutionary drivers of bacterial prevalence and barriers to pathogen sharing are crucially needed. Here were studied haemotropic Mycoplasma spp. (i.e., haemoplasmas) across a species-rich bat community in Belize over two years. Across 469 bats spanning 33 species, half of individuals and two-thirds of species were haemoplasma positive. Infection prevalence was higher for males and for species with larger body mass and colony sizes. Haemoplasmas displayed high genetic diversity (21 novel genotypes) and strong host specificity. Evolutionary patterns supported codivergence of bats and bacterial genotypes alongside phylogenetically constrained host shifts. Bat species centrality to the network of shared haemoplasma genotypes was phylogenetically clustered and unrelated to prevalence, further suggesting rare-but detectable-bacterial sharing between species. Our study highlights the importance of using fine phylogenetic scales when assessing host specificity and suggests phylogenetic similarity may play a key role in host shifts not only for viruses but also for bacteria. Such work more broadly contributes to increasing efforts to understand cross-species transmission and the epidemiological consequences of bacterial pathogens.


Assuntos
Quirópteros , Animais , Bactérias/genética , Belize , Genótipo , Humanos , Masculino , Filogenia
2.
J Parasitol ; 105(4): 555-566, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31348717

RESUMO

Dispersal influences the evolution and adaptation of organisms, but it can be difficult to detect. Host-specific parasites provide information about the dispersal of their hosts and may be valuable for examining host dispersal that does not result in gene flow or that has low signals of gene flow. We examined the population connectivity of the buffy flower bat, Erophylla sezekorni (Chiroptera: Phyllostomidae), and its associated obligate ectoparasite, Trichobius frequens (Diptera: Streblidae), across a narrow oceanic channel in The Bahamas that has previously been implicated as a barrier to dispersal in bats. Due to the horizontal transmission of T. frequens, we were able to test the hypothesis that bats are dispersing across this channel, but this dispersal does not result in gene flow, occurs rarely, or started occurring recently. We developed novel microsatellite markers for the family Streblidae in combination with previously developed markers for bats to genotype individuals from 4 islands in The Bahamas. We provide evidence for a single population of the host, E. sezekorni, but 2 populations of its bat flies, potentially indicating a recent reduction of gene flow in E. sezekorni, rare dispersal, or infrequent transportation of bat flies with their hosts. Despite high population differentiation in bat flies indicated by microsatellites, mitochondrial DNA shows no polymorphism, suggesting that bacterial reproductive parasites may be contributing to mitochondrial DNA sweeps. Parasites, including bat flies, provide independent information about their hosts and can be used to test hypotheses of host dispersal that may be difficult to assess using host genetics alone.


Assuntos
Distribuição Animal/fisiologia , Quirópteros/fisiologia , Quirópteros/parasitologia , Dípteros/fisiologia , Ectoparasitoses/veterinária , Algoritmos , Alelos , Animais , Bahamas , Teorema de Bayes , Análise por Conglomerados , Sequência Consenso , DNA Mitocondrial/química , Dípteros/genética , Dípteros/microbiologia , Ectoparasitoses/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Interações Hospedeiro-Parasita , Cadeias de Markov , Alinhamento de Sequência/veterinária , Wolbachia/fisiologia
3.
Ecol Evol ; 7(19): 7585-7598, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043016

RESUMO

Dispersal is a driving factor in the creation and maintenance of biodiversity, yet little is known about the effects of habitat variation and geography on dispersal and population connectivity in most mammalian groups. Bats of the family Molossidae are fast-flying mammals thought to have potentially high dispersal ability, and recent studies have indicated gene flow across hundreds of kilometers in continental North American populations of the Brazilian free-tailed bat, Tadarida brasiliensis. We examined the population genetics, phylogeography, and morphology of this species in Florida and across islands of The Bahamas, which are part of an island archipelago in the West Indies. Previous studies indicate that bats in the family Phyllostomidae, which are possibly less mobile than members of the family Molossidae, exhibit population structuring across The Bahamas. We hypothesized that T. brasiliensis would show high population connectivity throughout the islands and that T. brasiliensis would show higher connectivity than two species of phyllostomid bats that have been previously examined in The Bahamas. Contrary to our predictions, T. brasiliensis shows high population structure between two groups of islands in The Bahamas, similar to the structure exhibited by one species of phyllostomid bat. Phylogenetic and morphological analyses suggest that this structure may be the result of ancient divergence between two populations of T. brasiliensis that subsequently came into contact in The Bahamas. Our findings additionally suggest that there may be cryptic species within T. brasiliensis in The Bahamas and the West Indies more broadly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA