Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 1): 114428, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179883

RESUMO

Creating mesoporous architecture on the surface of metal oxides without using pore creating agent is significant interest in electrochemical sensors because these materials act as an efficient electron transfer process between the electrode interface and the analytes. Recent advances in mesoporous titanium dioxide (TiO2)-based materials have acquired extraordinary opportunities because of their interconnected porous structure could act as a host for doping with various transition metals or heteroatoms to form a new type of heterojunction. Herein, a simple method is developed to synthesize mesoporous copper oxide (CuO) decorated on TiO2 nanostructures in which homogenous shaped CuO nanocrystals act as dopants decorated on the mesoporous structure of TiO2, resulting in p-n heterojunction nanocomposite. The TiO2 particles exhibit a mesoporous structure with a pore volume of about 0.117 cm3/g is capable to load CuO nanocrystals on the surface. As a result, large pore volume 0.304 cm³/g is obtained for CuO-TiO2 heterojunction nanocomposite with the loading of uniform-shaped CuO nanocrystals on the mesoporous TiO2. The resulting CuO-TiO2 nanocomposite on modified glassy carbon (GC) electrode exhibits good electrochemical performance for oxidation of catechol with the observation of strong enhancement in the anodic peak potential at +0.36 V. The decrease in the overpotential for the oxidation of catechol when compared to TiO2/GC is attributed to the presence of CuO nanocrystals providing a large surface area, resulting in wide linear range 10 nM to 0.57 µM. Moreover, the resultant modified electrode exhibited good sensitivity, selectivity and reproducibility and the sensor could able to determine the presence of catechol in real samples such as lake and river water. Therefore, the obtained CuO-TiO2 nanocomposite on the modified GC delivered good electrochemical sensing performance and which could be able to perform a promising strategy for designing various metal oxide doped nanocomposites for various photochemical and electrocatalytic applications.


Assuntos
Técnicas Eletroquímicas , Nanocompostos , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Cobre/química , Nanocompostos/química , Óxidos/química , Carbono/química , Catecóis , Água
2.
Environ Res ; 215(Pt 3): 114427, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36179884

RESUMO

The capacity to generate a constant signal response from an enzyme on an electrode surface has been a fascinating topic of research from the past three decades. To nourish the enzymatic activity during electrochemical reactions, the immobilization of dual enzymes on the electrode surface could prevent the enzymatic loss without denaturation and thus long-term stability can be achieved. For effective immobilization of dual enzymes, mesoporous materials are the ideal choice because of its numerous advantages such as 1. The presence of porous structure facilitates high loading of enzymes 2. The formation of protective environment can withstand the enzymatic activity even at acidic or basic pH values and even at elevated temperatures. Herein, we develop bienzymatic immobilization of horseradish peroxidase (HRP) and cholesterol oxidase (ChOx) on mesoporous V2O5-TiO2 based binary nanocomposite for effective sensing of hydrogen peroxide (H2O2) in presence of redox mediator hydroquinone (HQ). The utilization of redox mediator in second-generation biosensing of H2O2 can eliminate the interference species and reduces the operating potential with higher current density for electrochemical reduction reaction. Using this mediator transfer process approach at HRP/ChOx/V2O5-TiO2 modified GC, the H2O2 can be determined at operating potential (-0.2 V) with good linear range (0.05-3.5 mM) higher sensitivity (1040 µAµM-1 cm-2) and lower detection limit of about 20 µM can be attained, which is due to higher mediation of electrons were transferred to the enzyme cofactors. These interesting characteristics could be due to mesoporous structure of V2O5-TiO2 can induce large immobilization and facilitate higher interaction with enzymes for wide range of biosensing applications.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Colesterol Oxidase , Coenzimas , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química , Hidroquinonas , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA