Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959657

RESUMO

pH regulation is essential to allow normal cell function, and their imbalance is associated with different pathologic situations, including cancer. In this study, we present the synthesis of 2-(((2-aminoethyl)imino)methyl)phenol (HL1) and the iron (III) complex (Fe(L1)2Br, (C1)), confirmed by X-ray diffraction analysis. The absorption and emission properties of complex C1 were assessed in the presence and absence of different physiologically relevant analytes, finding a fluorescent turn-on when OH- was added. So, we determined the limit of detection (LOD = 3.97 × 10-9 M), stoichiometry (1:1), and association constant (Kas = 5.86 × 103 M-1). Using DFT calculations, we proposed a spontaneous decomposition mechanism for C1. After characterization, complex C1 was evaluated as an intracellular pH chemosensor on the human primary gastric adenocarcinoma (AGS) and non-tumoral gastric epithelia (GES-1) cell lines, finding fluorescent signal activation in the latter when compared to AGS cells due to the lower intracellular pH of AGS cells caused by the increased metabolic rate. However, when complex C1 was used on metastatic cancer cell lines (MKN-45 and MKN-74), a fluorescent turn-on was observed in both cell lines because the intracellular lactate amount increased. Our results could provide insights about the application of complex C1 as a metabolic probe to be used in cancer cell imaging.


Assuntos
Corantes Fluorescentes , Ferro , Humanos , Ferro/análise , Corantes Fluorescentes/química , Linhagem Celular , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência/métodos
2.
Curr Med Chem ; 30(5): 573-600, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35670351

RESUMO

BACKGROUND: Since the 1980s, cancer research has focused primarily on developing new therapeutic agents targeting DNA alterations rather than understanding cancer as an integrated system composed of several modules. In this sense, G-quadruplex (G4) nucleic acids are a promising target for drug development for cancer therapy since they exist in the chromosomal telomeric sequences and the promoter regions of numerous genes. The G4 structures within telomeric DNA can inhibit telomerase activity and prevent the proliferation and immortalization of cancer cells. Furthermore, such G4 systems within the promoter regions of oncogenes can inhibit the transcription and expression of the oncogene. OBJECTIVE: The rational design of small molecules such as organic ligands and their metal- organic derivative compounds can stabilize G4 structures through different binding modes on several G4 DNA topologies. Metal-based compounds have demonstrated their competitiveness compared to organic molecules to distinguish G4 over the DNA duplex owing to their convenient coordination features, positive charge, and electron density promoted by organic ligand. RESULTS: This article is a comprehensive review of metal compounds G4-binders and their structural features that confer them the ability to recognize G-quartets and stabilize several DNA G4s. CONCLUSION: This stabilization can be achieved through extended square aromatic surfaces, increased hydrophobicity, different auxiliary ligands, axially coordinated ligands, and the nature of the metal center.


Assuntos
Antineoplásicos , Quadruplex G , Neoplasias , Humanos , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , DNA/química , Neoplasias/tratamento farmacológico , Compostos Orgânicos , Metais , Telômero/metabolismo
3.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 7): 1005-1010, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31392014

RESUMO

The coordination of the ligands with respect to the central atom in the complex bromido-tricarbon-yl[diphen-yl(pyridin-2-yl)phosphane-κ2 N,P]rhenium(I) chloro-form disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 or [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3, (I·2CHCl3), is best described as a distorted octa-hedron with three carbonyls in a facial conformation, a bromide atom, and a biting P,N-di-phenyl-pyridyl-phosphine ligand. Hirshfeld surface analysis shows that C-Cl⋯H inter-actions contribute 26%, the distance of these inter-actions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C5H11N) at 313 K in di-chloro-methane leads to the partial decoord-ination of the pyridyl-phosphine ligand, whose pyridyl group is replaced by a piperidine mol-ecule, and the complex bromido-tricarbon-yl[diphen-yl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I), [ReBr(C5H11N)(C17H14NP)(CO)3] or [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II). The mol-ecule has an intra-molecular N-H⋯N hydrogen bond between the non-coordinated pyridyl nitro-gen atom and the amine hydrogen atom from piperidine with D⋯A = 2.992 (9) Å. Thermogravimetry shows that I·2CHCl3 losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloro-form mol-ecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridyl-phosphine. The contribution to the scattering from highly disordered solvent mol-ecules in II was removed with the SQUEEZE routine [Spek (2015 ▸). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for M r, µ etc. do not take this solvent into account.

4.
Molecules ; 25(1)2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31892146

RESUMO

Cancer is a disease that involves impaired genome stability with a high mortality index globally. Since its discovery, many have searched for effective treatment, assessing different molecules for their anticancer activity. One of the most studied sources for anticancer therapy is natural compounds and their derivates, like alkaloids, which are organic molecules containing nitrogen atoms in their structure. Among them, oxoisoaporphine and sampangine compounds are receiving increased attention due to their potential anticancer effects. Boldine has also been tested as an anticancer molecule. Boldine is the primary alkaloid extract from boldo, an endemic tree in Chile. These compounds and their derivatives have unique structural properties that potentially have an anticancer mechanism. Different studies showed that this molecule can target cancer cells through several mechanisms, including reactive oxygen species generation, DNA binding, and telomerase enzyme inhibition. In this review, we summarize the state-of-art research related to oxoisoaporphine, sampangine, and boldine, with emphasis on their structural characteristics and the relationship between structure, activity, methods of extraction or synthesis, and anticancer mechanism. With an effective cancer therapy still lacking, these three compounds are good candidates for new anticancer research.


Assuntos
Alcaloides , Antineoplásicos Fitogênicos , Aporfinas , Inibidores Enzimáticos , Compostos Heterocíclicos de 4 ou mais Anéis , Naftiridinas , Neoplasias/tratamento farmacológico , Alcaloides/química , Alcaloides/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Aporfinas/química , Aporfinas/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Naftiridinas/química , Naftiridinas/uso terapêutico , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Telomerase/antagonistas & inibidores , Telomerase/metabolismo
5.
Photochem Photobiol ; 94(5): 845-852, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29446838

RESUMO

The reaction of 2,5-dibromopyrazine with N-Lithium pyrazolate in a 1:2 ratio leads to a mixture of 2-bromo-5-(1H-pyrazol-1-yl)pyrazine (I) and 2,5-di(1H-pyrazol-1-yl)pyrazine (II). The structures of I and II are highly planar. Two absorption bands can be observed for the compounds in the UV-Vis region, having ε in the order of 104  m-1  cm-1 . TD-DFT computed results support the nature of the lower energy absorptions as πpyrazine →π*pyrazine transitions, including an additional intraligand charge transfer transition for I (πpyrazol →π*pyrazine ). Upon excitation at 280 or 320 nm, the emission of both compounds is almost not affected by solvent polarity or oxygen presence, showing two bands for I and one for II in the 350-450 nm region. Emission of II follows a mono-exponential decay, while I decays following a bi-exponential law, hypothesized from πpyrazine →π*pyrazine and πpyrazol →π*pyrazine transitions. Photodegradation of I and II follows a first-order kinetic with constants of 1.18 × 10-2  min-1 and 0.13 × 10-2  min-1 , respectively. Results suggest that photodegradation of I starts with the loose of bromide followed by intermolecular pyrazolyl subtraction and ring opening. This path is not available for II, which is reflected in its enhanced photostability.

6.
Dalton Trans ; 46(5): 1567-1576, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28091640

RESUMO

Lithium diphenylphosphide unexpectedly provokes the ring-opening of tetrahydrofuran (THF) and by reaction with 3,6-dichloropyridazine leads to the formation of the ligand 3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine (P⋯N), which was isolated. The reaction of this ligand with the (Re(CO)3(THF)Br)2 dimer yields the novel complex [Br(CO)3Re(µ-3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine)2Re(CO)3Br] (BrRe(P⋯N)(N⋯P)ReBr), which was crystallized in the form of a chloroform solvate, (C46H40Br2Cl2N4O8P2Re2)·(CHCl3). The monoclinic crystal (P21/n) displays a bimetallic cage structure with a symmetry inversion centre in the middle of the rhenium to rhenium line. The molecule shows two oxidation signals occurring at +1.50 V and +1.76 V which were assigned to the ReI/ReII and ReII/ReIII metal-centered couples, respectively, while signals observed at -1.38 V and -1.68 V were assigned to ligand centered reductions. Experimental and DFT/TDDFT results indicate that the UV-Vis absorption maximum of BrRe(P⋯N)(N⋯P)ReBr occurring near 380 nm displays a metal to ligand charge transfer (MLCT) character, which is consistent with CV results. Upon excitation at this wavelength, a weak emission (Φem < 1 × 10-3) is observed around 580 nm (in dichloromethane) which decays with two distinct lifetimes τ1 and τ2 of 24 and 4.7 ns, respectively. The prevalence of non-radiative deactivation pathways is consistent with efficient internal conversion induced by the high conformational flexibility of the P⋯N ligand's long carbon chain. Measurements in a frozen solvent at 77 K, where vibrational deactivation is hindered, show intense emission associated with the 3MLCT state. These results demonstrate that BrRe(P⋯N)(N⋯P)ReBr preserves the dual emitting nature previously reported for the mononuclear complex RePNBr, with emission associated with and states.

7.
Inorg Chem ; 54(8): 3805-14, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25831075

RESUMO

We report the crystal face indexing and molecular spatial orientation, magnetic properties, electron paramagnetic resonance (EPR) spectra, and density functional theory (DFT) calculations of two previously reported oxovanadium phosphates functionalized with Cu(II) complexes, namely, [Cu(bipy)(VO2)(PO4)]n (1) and [{Cu(phen)}2(VO2(H2O)2)(H2PO4)2 (PO4)]n (2), where bipy = 2,2'-bipyridine and phen = 1,10-phenanthroline, obtained by a new synthetic route allowing the growth of single crystals appropriate for the EPR measurements. Compounds 1 and 2 crystallize in the triclinic group P1̅ and in the orthorhombic Pccn group, respectively, containing dinuclear copper units connected by two -O-P-O- bridges in 1 and by a single -O-P-O- bridge in 2, further connected through -O-P-O-V-O- bridges. We emphasize in our work the structural aspects related to the chemical paths that determine the magnetic properties. Magnetic susceptibility data indicate bulk antiferromagnetism for both compounds, allowing to calculate J = -43.0 cm(-1) (dCu-Cu = 5.07 Å; J defined as Hex(i,j) = -J Si·Sj), considering dinuclear units for 1, and J = -1.44 cm(-1) (dCu-Cu = 3.47 Å) using the molecular field approximation for 2. The single-crystal EPR study allows evaluation of the g matrices, which provide a better understanding of the electronic structure. The absence of structure of the EPR spectra arising from the dinuclear character of the compounds allows estimation of weak additional exchange couplings |J'| > 0.3 cm(-1) for 1 (dCu-Cu = 5.54 Å) and a smaller value of |J'| ≥ 0.15 cm(-1) for 2 (dCu-Cu = 6.59 Å). DFT calculations allow evaluating two different exchange couplings for each compound, specifically, J = -36.60 cm(-1) (dCu-Cu = 5.07 Å) and J' = 0.20 cm(-1) (dCu-Cu =5.54 Å) for 1 and J = -1.10 cm(-1) (dCu-Cu =3.47 Å) and J' = 0.01 cm(-1) (dCu-Cu = 6.59 Å) for 2, this last value being in the range of the uncertainties of the calculations. Thus, these values are in good agreement with those provided by magnetic and single-crystal EPR measurements.


Assuntos
Complexos de Coordenação/química , Cobre/química , Fosfatos/química , Teoria Quântica , Vanadatos/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Fenômenos Magnéticos , Modelos Moleculares
8.
Acta Crystallogr C ; 68(Pt 7): m200-2, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22763689

RESUMO

The structure of the title compound, poly[(dihydrogenphosphato-κO)(µ(3)-hydrogenphosphato)di-µ-oxido-(1,10-phenanthroline)copper(II)vanadium(V)], [CuV(HPO(4))(H(2)PO(4))O(2)(C(12)H(8)N(2))](n), is defined by [(phen)Cu-µ-(κ(2)O:O'-VP(2)O(10)H(3))(2)-Cu(phen)] units (phen is 1,10-phenanthroline), which are connected to neighbouring units through vanadyl bridges. Neighbouring chains have no covalent bonds between them, although they interdigitate through the phen groups via π-π interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA