Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38921393

RESUMO

Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a ß-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.

2.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36731871

RESUMO

D-xylose utilization by yeasts is an essential feature for improving second-generation ethanol production. However, industrial yeast strains are incapable of consuming D-xylose. Previous analyzes of D-xylose-consuming or fermenting yeast species reveal that the genomic features associated with this phenotype are complex and still not fully understood. Here we present a previously neglected yeast enzyme related to D-xylose metabolism, D-xylose dehydrogenase (XylDH), which is found in at least 105 yeast genomes. By analyzing the XylDH gene family, we brought evidence of gene evolution marked by purifying selection on codons and positive selection evidence in D-xylose-consuming and fermenting species, suggesting the importance of XylDH for D-xylose-related phenotypes in yeasts. Furthermore, although we found no putative metabolic pathway for XylDH in yeast genomes, namely the absence of three bacterial known pathways for this enzyme, we also provide its expression profile on D-xylose media following D-xylose reductase for two yeasts with publicly available transcriptomes. Based on these results, we suggest that XylDH plays an important role in D-xylose usage by yeasts, likely being involved in a cofactor regeneration system by reducing cofactor imbalance in the D-xylose reductase pathway.


Assuntos
Aldeído Redutase , Xilose , Xilose/metabolismo , Fermentação , Aldeído Redutase/metabolismo , Leveduras/genética
3.
Bioresour Bioprocess ; 9(1): 97, 2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-38647773

RESUMO

An imminent change in the world energy matrix makes it necessary to increase the production of renewable fuels. The United States and Brazil are the world's largest producers, but their production methods are very different, using different raw materials, ground corn and sugarcane juice, respectively. In recent years, strong investments have been made to expand the use of corn in Brazilian ethanol production. The combination of the sugar cane and corn ethanol industries has generated innovations in the sector, such as the "flex" mills, which are traditional sugar cane mills adapted to produce corn ethanol in the sugar cane off-season. Brazil has a portfolio of robust industrial yeasts for sugarcane ethanol production, naturally evolved and selected over the past 50 years. In this work, we analyze for the first time the performance of Brazilian industrial strains (BG-1, CAT-1, PE-2 and SA-1, widely used in sugarcane ethanol production) in corn ethanol production using different stress conditions. Ethanol Red yeast, traditionally used in corn ethanol plants around the world, was used as a control. In terms of tolerance to temperature (35 °C), strains BG-1 and SA-1 stood out. In fermentations with high solids concentration (35%), strain BG-1 reached ethanol contents higher than 19% w/v and had a productivity gain of 5.8% compared to fermentation at 30%. This was the first time that these industrial strains were evaluated using the high solids concentration of 35% and the results point to ways to improve the corn ethanol production process.

4.
FEMS Yeast Res ; 21(4)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983370

RESUMO

In this work, we evaluated the fermentative performance and metabolism modifications of a second generation (2G) industrial yeast by comparing an industrial condition during laboratory and industrial scale fermentations. Fermentations were done using industrial lignocellulosic hydrolysate and a synthetic medium containing inhibitors and analyses were carried out through transcriptomics and proteomics of these experimental conditions. We found that fermentation profiles were very similar, but there was an increase in xylose consumption rate during fermentations using synthetic medium when compared to lignocellulosic hydrolysate, likely due to the presence of unknown growth inhibitors contained in the hydrolysate. We also evaluated the bacterial community composition of the industrial fermentation setting and found that the presence of homofermentative and heterofermentative bacteria did not significantly change the performance of yeast fermentation. In parallel, temporal differentially expressed genes (tDEG) showed differences in gene expression profiles between compared conditions, including heat shocks and the presence of up-regulated genes from the TCA cycle during anaerobic xylose fermentation. Thus, we indicate HMF as a possible electron acceptor in this rapid respiratory process performed by yeast, in addition to demonstrating the importance of culture medium for the performance of yeast within industrial fermentation processes, highlighting the uniquenesses according to scales.


Assuntos
Etanol/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Bactérias , Meios de Cultura , Regulação Fúngica da Expressão Gênica , Microbiologia Industrial , Lignina/metabolismo , Proteoma , RNA-Seq , Saccharomyces cerevisiae/genética , Transcriptoma
5.
BMC Ecol Evol ; 21(1): 84, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990179

RESUMO

BACKGROUND: Plant pathogenesis related-1 (PR-1) proteins belong to the CAP superfamily and have been characterized as markers of induced defense against pathogens. Moniliophthora perniciosa and Moniliophthora roreri are hemibiotrophic fungi that respectively cause the witches' broom disease and frosty pod rot in Theobroma cacao. Interestingly, a large number of plant PR-1-like genes are present in the genomes of both species and many are up-regulated during the biotrophic interaction. In this study, we investigated the evolution of PR-1 proteins from 22 genomes of Moniliophthora isolates and 16 other Agaricales species, performing genomic investigation, phylogenetic reconstruction, positive selection search and gene expression analysis. RESULTS: Phylogenetic analysis revealed conserved PR-1 genes (PR-1a, b, d, j), shared by many Agaricales saprotrophic species, that have diversified in new PR-1 genes putatively related to pathogenicity in Moniliophthora (PR-1f, g, h, i), as well as in recent specialization cases within M. perniciosa biotypes (PR-1c, k, l) and M. roreri (PR-1n). PR-1 families in Moniliophthora with higher evolutionary rates exhibit induced expression in the biotrophic interaction and positive selection clues, supporting the hypothesis that these proteins accumulated adaptive changes in response to host-pathogen arms race. Furthermore, although previous work showed that MpPR-1 can detoxify plant antifungal compounds in yeast, we found that in the presence of eugenol M. perniciosa differentially expresses only MpPR-1e, k, d, of which two are not linked to pathogenicity, suggesting that detoxification might not be the main function of most MpPR-1. CONCLUSIONS: Based on analyses of genomic and expression data, we provided evidence that the evolution of PR-1 in Moniliophthora was adaptive and potentially related to the emergence of the parasitic lifestyle in this genus. Additionally, we also discuss how fungal PR-1 proteins could have adapted from basal conserved functions to possible roles in fungal pathogenesis.


Assuntos
Agaricales , Doenças das Plantas , Agaricales/genética , Humanos , Estilo de Vida , Filogenia
6.
Commun Biol ; 3(1): 263, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451394

RESUMO

Moniliophthora perniciosa is a fungal pathogen and causal agent of the witches' broom disease of cocoa, a threat to the chocolate industry and to the economic and social security in cocoa-planting countries. The membrane-bound enzyme alternative oxidase (MpAOX) is crucial for pathogen survival; however a lack of information on the biochemical properties of MpAOX hinders the development of novel fungicides. In this study, we purified and characterised recombinant MpAOX in dose-response assays with activators and inhibitors, followed by a kinetic characterization both in an aqueous environment and in physiologically-relevant proteoliposomes. We present structure-activity relationships of AOX inhibitors such as colletochlorin B and analogues which, aided by an MpAOX structural model, indicates key residues for protein-inhibitor interaction. We also discuss the importance of the correct hydrophobic environment for MpAOX enzymatic activity. We envisage that such results will guide the future development of AOX-targeting antifungal agents against M. perniciosa, an important outcome for the chocolate industry.


Assuntos
Agaricales/efeitos dos fármacos , Agaricales/genética , Fungicidas Industriais/farmacologia , Proteínas Mitocondriais/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Terpenos/farmacologia , Agaricales/química , Agaricales/enzimologia , Relação Dose-Resposta a Droga , Cinética , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Oxirredutases/antagonistas & inibidores , Oxirredutases/química , Oxirredutases/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Bio Protoc ; 10(8): e3588, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659555

RESUMO

Plants recognize a wide variety of microbial molecules to detect and respond to potential invaders. Recognition of Microbe-Associated Molecular Patterns (MAMPs) by cell surface receptors initiate a cascade of biochemical responses that include, among others, ion fluxes across the plasma membrane. A consequence of such event is a decrease in the concentration of extracellular H+ ions, which can be experimentally detected in plant cell suspensions as a shift in the pH of the medium. Thus, similarly to reactive oxygen species (ROS) accumulation, phosphorylation of MAP kinases and induction of defense-related genes, MAMP-induced medium alkalinization can be used as a proxy for the activation of plant immune responses. Here, we describe a detailed protocol for the measurement of medium alkalinization of tobacco BY-2 cell suspensions upon treatment with two different MAMPs: chitohexamers derived from fungal cell walls (NAG6; N-acetylglucosamine) and the flagellin epitope flg22, found in the bacterial flagellum. This method provides a reliable and fast platform to access MAMP-Triggered Immunity (MTI) in tobacco cell suspensions and can be easily adapted to other plant species as well as to other MAMPs.

8.
NAR Genom Bioinform ; 2(1): lqz024, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33575571

RESUMO

The advent of high-throughput sequencing technologies made it possible to obtain large volumes of genetic information, quickly and inexpensively. Thus, many efforts are devoted to unveiling the biological roles of genomic elements, being the distinction between protein-coding and long non-coding RNAs one of the most important tasks. We describe RNAsamba, a tool to predict the coding potential of RNA molecules from sequence information using a neural network-based that models both the whole sequence and the ORF to identify patterns that distinguish coding from non-coding transcripts. We evaluated RNAsamba's classification performance using transcripts coming from humans and several other model organisms and show that it recurrently outperforms other state-of-the-art methods. Our results also show that RNAsamba can identify coding signals in partial-length ORFs and UTR sequences, evidencing that its algorithm is not dependent on complete transcript sequences. Furthermore, RNAsamba can also predict small ORFs, traditionally identified with ribosome profiling experiments. We believe that RNAsamba will enable faster and more accurate biological findings from genomic data of species that are being sequenced for the first time. A user-friendly web interface, the documentation containing instructions for local installation and usage, and the source code of RNAsamba can be found at https://rnasamba.lge.ibi.unicamp.br/.

9.
Microbiol Resour Announc ; 8(30)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346025

RESUMO

Brazilian purpuric fever is a febrile hemorrhagic pediatric disease caused by Haemophilus influenzae biogroup aegyptius, a bacterium which was formerly associated with only self-limited purulent conjunctivitis. Here, we present draft genomes of strains from five Brazilian purpuric fever cases and one conjunctivitis case.

10.
Fungal Biol ; 123(4): 330-340, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30928041

RESUMO

The fungus Trichoderma reesei is employed in the production of most enzyme cocktails used by the lignocellulosic biofuels industry today. Despite significant improvements, the cost of the required enzyme preparations remains high, representing a major obstacle for the industrial production of these alternative fuels. In this study, a new Trichoderma erinaceum strain was isolated from decaying sugarcane straw. The enzyme cocktail secreted by the new isolate during growth in pretreated sugarcane straw-containing medium presented higher specific activities of ß-glucosidase, endoxylanase, ß-xylosidase and α-galactosidase than the cocktail of a wild T. reesei strain and yielded more glucose in the hydrolysis of pretreated sugarcane straw. A proteomic analysis of the two strains' secretomes identified a total of 86 proteins, of which 48 were exclusive to T. erinaceum, 35 were exclusive to T. reesei and only 3 were common to both strains. The secretome of T. erinaceum also displayed a higher number of carbohydrate-active enzymes than that of T. reesei (37 and 27 enzymes, respectively). Altogether, these results reveal the significant potential of the T. erinaceum species for the production of lignocellulases, both as a possible source of enzymes for the supplementation of industrial cocktails and as a candidate chassis for enzyme production.


Assuntos
Proteínas Fúngicas/análise , Lignina/metabolismo , Caules de Planta/microbiologia , Proteoma/análise , Saccharum/microbiologia , Trichoderma/isolamento & purificação , Trichoderma/metabolismo , Biotransformação , Hidrolases/análise , Hidrólise , Trichoderma/química
11.
DNA Res ; 26(3): 205-216, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768175

RESUMO

The Polyploid Gene Assembler (PGA), developed and tested in this study, represents a new strategy to perform gene-space assembly from complex genomes using low coverage DNA sequencing. The pipeline integrates reference-assisted loci and de novo assembly strategies to construct high-quality sequences focused on gene content. Pipeline validation was conducted with wheat (Triticum aestivum), a hexaploid species, using barley (Hordeum vulgare) as reference, that resulted in the identification of more than 90% of genes and several new genes. Moreover, PGA was used to assemble gene content in Saccharum spontaneum species, a parental lineage for hybrid sugarcane cultivars. Saccharum spontaneum gene sequence obtained was used to reference-guided transcriptome analysis of six different tissues. A total of 39,234 genes were identified, 60.4% clustered into known grass gene families. Thirty-seven gene families were expanded when compared with other grasses, three of them highlighted by the number of gene copies potentially involved in initial development and stress response. In addition, 3,108 promoters (many showing tissue specificity) were identified in this work. In summary, PGA can reconstruct high-quality gene sequences from polyploid genomes, as shown for wheat and S. spontaneum species, and it is more efficient than conventional genome assemblers using low coverage DNA sequencing.


Assuntos
Genoma de Planta , Saccharum/genética , Sequenciamento Completo do Genoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Especificidade de Órgãos , Filogenia , Análise de Sequência de RNA , Triticum/genética
12.
Sci Rep ; 7(1): 7818, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798297

RESUMO

The pathogenic fungi Moniliophthora perniciosa causes Witches' Broom Disease (WBD) of cacao. The structure of MpPR-1i, a protein expressed by M. perniciosa when it infects cacao, are presented. This is the first reported de novo structure determined by single-wavelength anomalous dispersion phasing upon soaking with selenourea. Each monomer has flexible loop regions linking the core alpha-beta-alpha sandwich topology that comprise ~50% of the structure, making it difficult to generate an accurate homology model of the protein. MpPR-1i is monomeric in solution but is packed as a high ~70% solvent content, crystallographic heptamer. The greatest conformational flexibility between monomers is found in loops exposed to the solvent channel that connect the two longest strands. MpPR-1i lacks the conserved CAP tetrad and is incapable of binding divalent cations. MpPR-1i has the ability to bind lipids, which may have roles in its infection of cacao. These lipids likely bind in the palmitate binding cavity as observed in tablysin-15, since MpPR-1i binds palmitate with comparable affinity as tablysin-15. Further studies are required to clarify the possible roles and underlying mechanisms of neutral lipid binding, as well as their effects on the pathogenesis of M. perniciosa so as to develop new interventions for WBD.


Assuntos
Agaricales/metabolismo , Cacau/microbiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Agaricales/química , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Palmitatos/metabolismo , Doenças das Plantas/microbiologia , Ligação Proteica , Conformação Proteica
13.
Mol Plant Pathol ; 18(3): 363-377, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27010366

RESUMO

Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, can cause losses greater than 80%. Despite its economic importance, there is no soybean cultivar with durable ASR resistance. In addition, the P. pachyrhizi genome is not yet available. However, the availability of other rust genomes, as well as the development of sample enrichment strategies and bioinformatics tools, has improved our knowledge of the ASR secretome and its potential effectors. In this context, we used a combination of laser capture microdissection (LCM), RNAseq and a bioinformatics pipeline to identify a total of 36 350 P. pachyrhizi contigs expressed in planta and a predicted secretome of 851 proteins. Some of the predicted secreted proteins had characteristics of candidate effectors: small size, cysteine rich, do not contain PFAM domains (except those associated with pathogenicity) and strongly expressed in planta. A comparative analysis of the predicted secreted proteins present in Pucciniales species identified new members of soybean rust and new Pucciniales- or P. pachyrhizi-specific families (tribes). Members of some families were strongly up-regulated during early infection, starting with initial infection through haustorium formation. Effector candidates selected from two of these families were able to suppress immunity in transient assays, and were localized in the plant cytoplasm and nuclei. These experiments support our bioinformatics predictions and show that these families contain members that have functions consistent with P. pachyrhizi effectors.


Assuntos
Proteínas Fúngicas/metabolismo , Metaboloma , Nicotiana/microbiologia , Phakopsora pachyrhizi/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Análise por Conglomerados , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Ontologia Genética , Metaboloma/genética , Família Multigênica , Phakopsora pachyrhizi/genética , Filogenia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/microbiologia , Glycine max/microbiologia , Nicotiana/imunologia , Transcriptoma/genética
14.
Front Microbiol ; 7: 1518, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790186

RESUMO

Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes). Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD) were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi. Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucanases (GH9) and beta-glucosidases (GH1) were the most important glycoside hydrolase families related to lignocellulose degradation in both castes. Classical cellulases such as exo-glucanases (GH7) and endo-glucanases (GH5 and GH45), as well as classical xylanases (GH10 and GH11), were found in both castes only taxonomically related to protists, highlighting the importance of symbiosis in C. gestroi. Moreover, our analysis revealed the presence of Auxiliary Activity enzyme families (AAs), which could be related to lignin modifications in termite digestomes. In conclusion, this report expanded the knowledge on genes and proteins related to CAZy/PAD enzymes from worker and soldier castes of lower termites, revealing new potential enzyme candidates for second-generation biofuel processes.

15.
Curr Genet ; 61(2): 185-202, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25614078

RESUMO

Transposons are an important source of genetic variation. The phytopathogen Moniliophthora perniciosa shows high level of variability but little is known about the role of class I elements in shaping its genome. In this work, we aimed the characterization of a new gypsy/Ty3 retrotransposon species, named MpSaci, in the M. perniciosa genome. These elements are largely variable in size, ranging from 4 to 15 kb, and harbor direct long terminal repeats (LTRs) with varying degrees of similarity. Approximately, all of the copies are non-autonomous as shifts in the reading frame and stop codons were detected. Only two elements (MpSaci6 and MpSaci9) code for GAG and POL proteins that possess functional domains. Conserved domains that are typically not found in retrotransposons were detected and could potentially impact the expression of neighbor genes. Solo LTRs and several LARDs (large retrotransposon derivative) were detected. Unusual elements containing small sequences with or without interruptions that are similar to gag or different pol domains and presenting LTRs with different levels of similarities were identified. Methylation was observed in MpSaci reverse transcriptase sequences. Distribution analysis indicates that MpSaci elements are present in high copy number in the genomes of C-, S- and L-biotypes of M. perniciosa. In addition, C-biotype isolates originating from the state of Bahia have fragments in common with isolates from the Amazon region and two hybridization profiles related to two chromosomal groups. RT-PCR analysis reveals that the gag gene is constitutively expressed and that the expression is increased at least three-fold with nutrient depravation even though no new insertion were observed. These findings point out that MpSaci collaborated and, even though is primarily represented by non-autonomous elements, still might contribute to the generation of genetic variability in the most important cacao pathogen in Brazil.


Assuntos
Agaricales/genética , Genoma Fúngico , Filogenia , Retroelementos/genética , Agaricales/patogenicidade , Sequência de Aminoácidos , Brasil , Cacau/microbiologia , Humanos , Fases de Leitura Aberta , Alinhamento de Sequência
16.
Microb Cell Fact ; 14: 13, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25633848

RESUMO

BACKGROUND: The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. RESULTS: In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. CONCLUSIONS: Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst.


Assuntos
Bactérias/genética , Etanol/metabolismo , Perfilação da Expressão Gênica , Saccharomyces cerevisiae/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biomassa , Brasil , Fermentação , Floculação , Ontologia Genética , Genótipo , Microbiologia Industrial/métodos , Cinética , Interações Microbianas , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharum/metabolismo
17.
Proteomics ; 14(7-8): 904-12, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24678036

RESUMO

The main goal of this work is to evaluate some differential protein species in transgenic (T) and nontransgenic (NT) Arabidopsis thaliana plants after their cultivation in the presence or absence of sodium selenite. The transgenic line was obtained through insertion of CaMV 35S controlling nptII gene. Comparative proteomics through 2D-DIGE is carried out in four different groups (NT × T; NT × Se-NT (where Se is selenium); Se-NT × Se-T, and T × Se-T). Although no differential proteins are achieved in the T × Se-T group, for the others, 68 differential proteins (by applying a regulation factor ≥1.5) are achieved, and 27 of them accurately characterized by ESI-MS/MS. These proteins are classified into metabolism, energy, signal transduction, disease/defense categories, and some of them are involved in the glycolysis pathway-Photosystems I and II and ROS combat. Additionally, laser ablation imaging is used for evaluating the Se and sulfur distribution in leaves of different groups, corroborating some results obtained and related to proteins involved in the glycolysis pathway. From these results, it is possible to conclude that the genetic modification also confers to the plant resistance to oxidative stress.


Assuntos
Arabidopsis/genética , Folhas de Planta/genética , Proteômica , Selenito de Sódio/administração & dosagem , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lasers , Imagem Molecular/métodos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/biossíntese , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
18.
MethodsX ; 1: 225-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26150956

RESUMO

The pulp surrounding the seeds of some fruits is rich in mucilage, carbohydrates, etc. Some seeds are rich in proteins and polyphenols. Fruit seeds, like cacao (Theobroma cacao) and cupuassu (Theobroma grandiflorum), are subjected to fermentation to develop flavor. During fermentation, ethanol is produced [2-6]. All of these compounds are considered as interfering substances that hinder the DNA extraction [4-8]. Protocols commonly used in the DNA extraction in samples of plant origin were used, but without success. Thus, a protocol for DNA samples under different conditions that can be used for similar samples was developed and applied with success. The protocol initially described for RNA samples by Zeng et al. [9] and with changes proposed by Provost et al. [5] was adapted for extracting DNA samples from those described. However, several modifications have been proposed:•Samples were initially washed with petroleum ether for fat phase removal.•RNAse was added to the extraction buffer, while spermidin was removed.•Additional steps of extraction with 5 M NaCl, saturated NaCl and CTAB (10%) were included and precipitation was carried out with isopropanol, followed by washing with ethanol.

19.
PLoS One ; 8(11): e78931, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244387

RESUMO

Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences.


Assuntos
Cromossomos de Plantas , Coffea , Elementos de DNA Transponíveis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/fisiologia , Transcrição Gênica/fisiologia , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Coffea/genética , Coffea/metabolismo
20.
Insect Biochem Mol Biol ; 43(10): 970-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23917163

RESUMO

Termites can degrade up to 90% of the lignocellulose they ingest using a repertoire of endogenous and symbiotic degrading enzymes. Termites have been shown to secrete two main glycoside hydrolases, which are GH1 (EC 3.2.1.21) and GH9 (EC 3.2.1.4) members. However, the molecular mechanism for lignocellulose degradation by these enzymes remains poorly understood. The present study was conducted to understand the synergistic relationship between GH9 (CgEG1) and GH1 (CgBG1) from Coptotermes gestroi, which is considered the major urban pest of São Paulo State in Brazil. The goal of this work was to decipher the mode of operation of CgEG1 and CgBG1 through a comprehensive biochemical analysis and molecular docking studies. There was outstanding degree of synergy in degrading glucose polymers for the production of glucose as a result of the endo-ß-1,4-glucosidase and exo-ß-1,4-glucosidase degradation capability of CgEG1 in concert with the high catalytic performance of CgBG1, which rapidly converts the oligomers into glucose. Our data not only provide an increased comprehension regarding the synergistic mechanism of these two enzymes for cellulose saccharification but also give insight about the role of these two enzymes in termite biology, which can provide the foundation for the development of a number of important applied research topics, such as the control of termites as pests as well as the development of technologies for lignocellulose-to-bioproduct applications.


Assuntos
Glicosídeo Hidrolases/metabolismo , Isópteros/enzimologia , Animais , Celulose/metabolismo , Glicosídeo Hidrolases/isolamento & purificação , Cinética , Simulação de Acoplamento Molecular , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA