Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 4: 20-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124183

RESUMO

CK2 is a constitutively active Ser/Thr protein kinase deregulated in cancer and other pathologies, responsible for about the 20% of the human phosphoproteome. The holoenzyme is a complex composed of two catalytic (α or α´) and two regulatory (ß) subunits, with individual subunits also coexisting in the cell. In the holoenzyme, CK2ß is a substrate-dependent modulator of kinase activity. Therefore, a comprehensive characterization of CK2 cellular function should firstly address which substrates are phosphorylated exclusively when CK2ß is present (class-III or beta-dependent substrates). However, current experimental constrains limit this classification to a few substrates. Here, we took advantage of motif-based prediction and designed four linear patterns for predicting class-III behavior in sets of experimentally determined CK2 substrates. Integrating high-throughput substrate prediction, functional classification and network analysis, our results suggest that beta-dependent phosphorylation might exert particular regulatory roles in viral infection and biological processes/pathways like apoptosis, DNA repair and RNA metabolism. It also pointed, that human beta-dependent substrates are mainly nuclear, a few of them shuttling between nuclear and cytoplasmic compartments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA