Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509849

RESUMO

Zinc deficiency poses a significant health challenge worldwide, particularly in regions where access to and the affordability of dietary diversity are limited. This research article presents a time course analysis of kernel development on the zinc content in maize kernels with different genetic backgrounds, including normal maize, quality protein maize, and high-zinc maize, grown at two locations. Zn concentrations during stage I were high, decreasing between stages II and IV and increasing during stages V to VII. High-zinc kernel genotypes, including those ones with high-quality protein genetic backgrounds, have higher contents of zinc and iron during the milky stage (fresh/green maize). The zinc and iron content in fresh maize differed depending on the genotype. By consuming fresh maize biofortified with zinc, up to 89% and 100% of EAR needs can be fulfilled for pregnant women and children. The results demonstrate that fresh high-zinc maize accumulates a substantial amount of this micronutrient, highlighting its potential as a valuable source for addressing zinc deficiency.

2.
Insects ; 13(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36292825

RESUMO

Smallholder farmers who grow maize landraces face important challenges to preserve their seed biodiversity from one season to another. This study was carried out in the central highlands of Mexico to compare the effectiveness of two seed storage practices-specifically, polypropylene woven bags (farmers' conventional practice) vs. hermetic containers-for minimizing seed losses and maintaining germination. Four Mexican landraces were stored for three and six months. Data on moisture content and kernel damage were collected at the beginning and the end of the storage period. Pest-free samples collected were also analyzed for seed germination. Moisture content was below 13% overall and was not significantly affected by storage technology or storage time. Samples from the polypropylene woven bags suffered significant damage from Sitophilus zeamais and Prostephanus truncatus, with the percentages of insect damage and weight loss reaching 61.4% and 23.4%, respectively. Losses were minimal in seed stored in hermetic containers, with a maximum insect damage of 4.1% and weight loss of 2.2%. Overall, the germination rate of samples stored in these airtight containers was greater than 90%. This study provides additional evidence on the effectiveness of hermetic containers at maintaining Mexican landraces' seed quantity and quality during storage in smallholder conditions in central Mexico.

3.
Foods ; 11(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35885392

RESUMO

Maize is one of the three worldwide cereal crops with the most outstanding production; however, its postharvest losses range from 2 to 40% due to inadequate harvesting, drying, and storage technologies. This study focuses on the Instant Controlled Pressure Drop technology (DIC) effect on maize kernels' drying and rehydration kinetics. In total, 19 different DIC treatments were carried out on maize kernels (~25% d.b.). The DIC parameters studied were steam pressure (0.1 to 0.4 MPa) and treatment time (10 to 90 s). After DIC treatment, drying kinetics were carried out by Convective Air Drying (CAD) at 50 °C and 0.4 ms-1 airflow. Rehydration kinetics and Water Holding Capacity (WHC) were evaluated at 20 °C. In comparison to CAD samples, DIC (0.4 MPa and 90 s) reduced the drying time from 180 min to ~108 min. Additionally, regarding the rehydration and WHC results, DIC achieved the same moisture content in only 3.5 min that controls achieved after 1 h of rehydration (0.40 g H2O/g dry matter). Moreover, DIC (0.4 MPa and nine cycles of 10 s) increased the WHC 2.3 times compared to the control. In this way, DIC could be a postharvest technology to improve maize kernels' drying operations and functional properties.

4.
PLoS One ; 16(6): e0252832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086831

RESUMO

Agri-food systems are besieged by malnutrition, yield gaps, and climate vulnerability, but integrated, research-based responses in public policy, agricultural, value chains, and finance are constrained by short-termism and zero sum thinking. As they respond to current and emerging agri-food system challenges, decision makers need new tools that steer toward multi-sector, evidence-based collaboration. To support national agri-food system policy processes, the Integrated Agri-food System Initiative (IASI) methodology was developed and validated through case studies in Mexico and Colombia. This holistic, multi-sector methodology builds on diverse existing data resources and leverages situation analysis, modeled predictions, and scenarios to synchronize public and private action at the national level toward sustainable, equitable, and inclusive agri-food systems. Culminating in collectively agreed strategies and multi-partner tactical plans, the IASI methodology enabled a multi-level systems approach by mobilizing design thinking to foster mindset shifts and stakeholder consensus on sustainable and scalable innovations that respond to real-time dynamics in complex agri-food systems. To build capacity for these types of integrated, context-specific approaches, greater investment is needed in supportive international institutions that function as trusted in-region 'innovation brokers.' This paper calls for a structured global network to advance adaptation and evolution of essential tools like the IASI methodology in support of the One CGIAR mandate and in service of positive agri-food systems transformation.


Assuntos
Agricultura , Mudança Climática , Alimentos , Investimentos em Saúde , Política Pública
5.
Curr Res Food Sci ; 4: 279-286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997794

RESUMO

High kernel-zinc maize varieties are available to consumers in several countries in Latin America to contribute to increase the zinc intake of their populations. Minerals, phytic acid and amino acids retention were measured after processing six maize varieties including three high kernel-zinc, one quality protein maize and two conventional maize. Grain for each variety was processed into tortillas, arepas and mazamorra, common maize dishes in the region. To evaluate the effect of processing kernel-zinc maize varieties on zinc retention, varieties were grouped in zinc biofortified maize (ZBM) and non-ZBM. Iron, zinc, phytic acid, tryptophan and lysine concentrations in non-processed maize were 17.1-19.1 â€‹µg/g DW, 23.9-33.0 â€‹µg/g DW, 9.9-10.0 â€‹mg/g DW, 0.06-0.08% and 0.27-0.37%, respectively. In tortillas, the iron, zinc, phytic acid and lysine content did not change (p â€‹< â€‹0.05) compared to raw grain, while tryptophan decreased by 32%. True retention of iron in arepas and mazamorra was 43.9 and 60.0%, for zinc 36.8 and 41.3%, and for phytic acid 19.3 and 25.1%. Tortillas had higher zinc retention than arepas and mazamorra due to use of whole grain in the nixtamalization process. Therefore, to contribute to higher zinc intake, nixtamalized tortilla prepared with biofortified zinc maize is recommended. Additionally, promotion of whole grain flour to prepare arepas should be explored to enhance the intake of minerals that are usually confined to aleurone layers and germ.

6.
Sci Rep ; 11(1): 3696, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580081

RESUMO

We present an assessment of the extent, diversity, and nutritional contribution of the milpa through a quantitative analysis of data from a survey conducted in 989 small scale farm households in the Western Highlands of Guatemala (WHG). The milpa is a traditional agricultural system in which maize is intercropped with other species, such as common beans, faba beans, squashes or potatoes. Our study shows that more than two-thirds of the 1,205 plots recorded were under the milpa system, with a great diversity of crop combinations. As shown with the 357 plots for which specific yields were available, milpa systems present higher total productivity than monocropped maize, expressed as total energy yield of the harvested crops in the respective system, and were also better at providing the recommended daily allowances of fourteen essential nutrients, based on a Potential Nutrient Adequacy (PNA) indicator. Maize-bean-potato, maize-potato, and maize-bean-faba intercrops had the highest PNAs, and monocropped maize, the lowest. These results support the implementation of milpa systems tailored to different agro-ecologies in order to improve nutrition in the WHG and a variety of similar regions.

7.
Compr Rev Food Sci Food Saf ; 19(4): 1809-1834, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337075

RESUMO

Agro-food systems are undergoing rapid innovation in the world and the system's continuum is promoted at different scales with one of the main outcomes to improve nutrition of consumers. Consumer knowledge through educational outreach is important to food and nutrition security and consumer demands guide breeding efforts. Maize is an important part of food systems. It is a staple food and together with rice and wheat, they provide 60% of the world's caloric intake. In addition to being a major contributor to global food and nutrition security, maize forms an important part of the culinary culture in many areas of Africa, the Americas, and Asia. Maize genetics are being exploited to improve human nutrition with the ultimate outcome of improving overall health. By impacting the health of maize consumers, market opportunities will be opened for maize producers with unique genotypes. Although maize is a great source of macronutrients, it is also a source of many micronutrients and phytochemicals purported to confer health benefits. The process of biofortification through traditional plant breeding has increased the protein, provitamin A carotenoid, and zinc contents of maize. The objective of this paper is to review the innovations developed and promoted to improve the nutritional profiles of maize and outcomes of the maize agro-food system.


Assuntos
Melhoramento Vegetal , Zea mays/química , Zea mays/genética , Carotenoides , Humanos , Micronutrientes , Proteínas de Vegetais Comestíveis , Vitamina A , Zinco
8.
Front Plant Sci ; 10: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778360

RESUMO

Aflatoxin contamination of maize grain and products causes serious health problems for consumers worldwide, and especially in low- and middle-income countries where monitoring and safety standards are inconsistently implemented. Vitamin A deficiency (VAD) also compromises the health of millions of maize consumers in several regions of the world including large parts of sub-Saharan Africa. We investigated whether provitamin A (proVA) enriched maize can simultaneously contribute to alleviate both of these health concerns. We studied aflatoxin accumulation in grain of 120 maize hybrids formed by crossing 3 Aspergillus flavus resistant and three susceptible lines with 20 orange maize lines with low to high carotenoids concentrations. The hybrids were grown in replicated, artificially-inoculated field trials at five environments. Grain of hybrids with larger concentrations of beta-carotene (BC), beta-cryptoxanthin (BCX) and total proVA had significantly less aflatoxin contamination than hybrids with lower carotenoids concentrations. Aflatoxin contamination had negative genetic correlation with BCX (-0.28, p < 0.01), BC (-0.18, p < 0.05), and proVA (-0.23, p < 0.05). The relative ease of breeding for increased proVA carotenoid concentrations as compared to breeding for aflatoxin resistance in maize suggests using the former as a component of strategies to combat aflatoxin contamination problems for maize. Our findings indicate that proVA enriched maize can be particularly beneficial where the health burdens of exposure to aflatoxin and prevalence of VAD converge with high rates of maize consumption.

9.
J Sci Food Agric ; 97(3): 793-801, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27173638

RESUMO

BACKGROUND: Biofortified maize is not only a good vehicle for provitamin A carotenoids for vitamin A deficient populations in developing countries but also a source of vitamin E, tocochromanols and phenolic compounds, which have antioxidant properties. Using high-performance liquid chromatography and a total antioxidant performance assay, the present study analyzed the antioxidant variation and antioxidant activity of 36 provitamin A improved maize hybrids and one common yellow maize hybrid. RESULTS: The ranges of major carotenoids in provitamin A carotenoids biofortified maize were zeaxanthin [1.2-13.2 µg g-1 dry weight (DW)], ß-cryptoxanthin (1.3-8.8 µg g-1 DW) and ß-carotene (1.3-8.0 µg g-1 DW). The ranges of vitamin E compounds identified in provitamin A carotenoids biofortified maize were α-tocopherol (3.4-34.3 µg g-1 DW), γ-tocopherol (5.9-54.4 µg g-1 DW), α-tocotrienol (2.6-19.5 µg g-1 DW) and γ-tocotrienol (45.4 µg g-1 DW). The ranges of phenolic compounds were γ-oryzanol (0.0-0.8 mg g-1 DW), ferulic acid (0.4-3.6 mg g-1 DW) and p-coumaric acid (0.1-0.45 mg g-1 DW). There was significant correlation between α-tocopherol and cis isomers of ß-carotene (P < 0.01). Tocotrienols were correlated with α-tocopherol and γ-oryzanol (P < 0.01). CONCLUSION: Genotype was significant in determining the variation in ß-cryptoxanthin, ß-carotene, α-tocopherol and γ-tocopherol contents (P < 0.01). A genotype × environment interaction was observed for γ-tocopherol content (P < 0.01). © 2016 Society of Chemical Industry.


Assuntos
Biofortificação , Carotenoides/análise , Provitaminas/análise , Sementes/química , Vitamina A/análise , Vitamina E/análise , Zea mays/química , Altitude , Antioxidantes/análise , Antioxidantes/metabolismo , Carotenoides/biossíntese , Clima , Ácidos Cumáricos/análise , Ácidos Cumáricos/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Cruzamentos Genéticos , Interação Gene-Ambiente , Genótipo , Humanos , México , Valor Nutritivo , Fenóis/análise , Fenóis/metabolismo , Fenilpropionatos/análise , Fenilpropionatos/metabolismo , Melhoramento Vegetal , Propionatos , Provitaminas/biossíntese , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Especificidade da Espécie , Vitamina A/metabolismo , Vitamina E/biossíntese , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
10.
J Agric Food Chem ; 64(44): 8289-8295, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27758103

RESUMO

Provitamin A (proVA) enhanced maize was developed to help alleviate vitamin A deficiency in maize-consuming populations. Nixtamalization (lime-cooking process) is the most commonly used maize-preparation method in Mexico and Central America. In this study, the effect of traditional nixtamalization (TN) and nixtamalized extrusion (NE) on proVA retention was evaluated. Kernel conversion to TN dough led to high proVA apparent retention (>100%), while kernel conversion to NE flour led to lower retention (85%). However, TN tortilla proVA carotenoid concentration was similar to the kernels' original concentration and slightly higher in NE tortillas. Genotypic variation has a strong effect on proVA retention in TN dough and NE flour, but no such variation in proVA retention was observed in tortillas. Tortillas prepared with proVA-enhanced maize, using either TN or NE, are a good source of proVA carotenoids. Also, dough made using TN and proVA-enhanced maize is a high proVA-content ingredient for other food products.


Assuntos
Pão , Carotenoides/química , Manipulação de Alimentos/métodos , Alimentos Fortificados , Zea mays/química , Pão/análise , Carotenoides/análise , Genótipo , Humanos , México , Provitaminas/química , Vitamina A/análise , Zea mays/genética
11.
J Agric Food Chem ; 59(20): 10781-6, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21919454

RESUMO

Quality protein maize (QPM) has approximately twice the tryptophan (Trp) and lysine (Lys) concentrations in protein compared to normal maize. Because several genetic systems control the protein quality of QPM, it is essential to regularly monitor Trp and/or Lys in breeding programs. Our objective was to examine the potential of near-infrared reflectance spectroscopy (NIRS) to enhance the efficiency of QPM research efforts by partially replacing more expensive and time-consuming wet chemistry analysis. More than 276 maize samples were used to develop NIRS models for protein content (PC), Trp, and Lys. The standard error of prediction (SEP) for the calibration and the coefficient of determination for validation (R(2)(v)) were 0.26 and 0.96 for PC, 0.005 and 0.85 for Trp, and 0.02 and 0.75 for Lys. When the NIRS models were used to evaluate 266 S2 lines from five QPM breeding populations, the coefficients of determination between NIRS and the chemical data were 0.94, 0.76, and 0.80 for PC, Trp, and Lys, respectively. Therefore, the NIRS models can be used to support the QPM breeding efforts.


Assuntos
Lisina/análise , Proteínas de Plantas/análise , Espectroscopia de Luz Próxima ao Infravermelho , Triptofano/análise , Zea mays/química , Cruzamento , Reprodutibilidade dos Testes , Sementes/química
12.
Plant Foods Hum Nutr ; 66(2): 203-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21611770

RESUMO

The maize produced in the highlands of Mexico (>2,400 masl) is generally not accepted by the flour and masa and tortilla industry. The objective of this work was to evaluate the grain quality and tortilla properties of maize landraces commonly grown in the highlands of Mexico and compare them with improved germplasm (hybrids). Germplasm analysis included 11 landraces, 32 white hybrids, and six yellow hybrids. Grain quality was analyzed for a range of physical and chemical factors, as well as for alkaline cooking quality. Landrace grains tended to be heterogeneous in terms of size, hardness and color. All landraces had soft-intermediate grains with an average flotation index (FI) of 61%. In contrast, hybrid grains were homogenous in size and color, and harder than landrace grains, with a FI of 38%. Protein, free sugars, oil and phenolic content in landraces were higher than in the hybrids. Significant correlations were found between phenolic content and tortilla color (r= -0.60; p<0.001). Three landraces were identified as appropriate for the masa and tortilla industry, while all the hybrids evaluated fulfilled the requirements of this industry.


Assuntos
Farinha/análise , Zea mays/química , Zea mays/crescimento & desenvolvimento , Pão , Carboidratos/análise , Quimera , Cor , Culinária , Óleo de Milho/análise , México , Fenóis/análise , Proteínas de Plantas/análise
13.
J Agric Food Chem ; 59(2): 467-74, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21175211

RESUMO

The oxygen isotope composition (δ(18)O), accumulation of minerals (ash content), and nitrogen (N) content in plant tissues have been recently proposed as useful integrative physiological criteria associated with yield potential and drought resistance in maize. This study tested the ability of near-infrared reflectance spectroscopy (NIRS) to predict δ(18)O and ash and N contents in leaves and mature kernels of maize. The δ(18)O and ash and N contents were determined in leaf and kernel samples from a set of 15 inbreds and 18 hybrids grown in Mexico under full irrigation and two levels of drought stress. Calibration models between NIRS spectra and the measured variables were developed using modified partial least-squares regressions. Global models (which included inbred lines and hybrids) accurately predicted ash and N contents, whereas prediction of δ(18)O showed lower results. Moreover, in hybrids, NIRS clearly reflected genotypic differences in leaf and kernel ash and N contents within each water treatment. It was concluded that NIRS can be used as a rapid, cost-effective, and accurate method for predicting ash and N contents and as a method for screening δ(18)O in maize with promising applications in crop management and maize breeding programs for improved water and nitrogen use efficiency and grain quality.


Assuntos
Minerais/análise , Nitrogênio/análise , Isótopos de Oxigênio/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Zea mays/química , Zea mays/fisiologia , Secas , Genótipo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento
14.
Int J Plant Genomics ; 2009: 957602, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19688107

RESUMO

Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products.

15.
J Agric Food Chem ; 57(16): 7233-8, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19624133

RESUMO

Biofortification programs in maize have led to the development of quality protein maize (QPM) with increased contents of the essential amino acids lysine and tryptophan, and increased nutritional value for protein deficient populations where maize is a staple food. Because multiple genetic systems control and modify the protein quality of QPM, tryptophan or lysine monitoring is required to maximize genetic gain in breeding programs. The objective of this work was to develop an accurate, reliable, and inexpensive method for tryptophan analysis in whole-grain maize flour to support QPM research efforts around the world. Tryptophan reacts with glyoxylic acid in the presence of sulfuric acid and ferric chloride, producing a colored compound that absorbs at 560 nm. A series of experiments varying the reagent concentrations, hydrolysis time, and length of the colorimetric reaction resulted in an optimized protocol which uses 0.1 M glyoxylic acid in 7 N sulfuric acid and 1.8 mM ferric chloride, and 30 min reaction time. This method produced stable and reproducible results for tryptophan concentration in whole-grain maize flour and was validated by comparison with data obtained using an acetic acid-based colorimetric procedure (r(2) = 0.80) and high pressure liquid chromatography (HPLC) (r(2) = 0.71). We describe adaptations that permit high throughput application of this tryptophan analysis method using a microplate platform.


Assuntos
Colorimetria/métodos , Proteínas de Plantas/análise , Triptofano/análise , Zea mays/química , Colorimetria/economia , Farinha/análise , Valor Nutritivo , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA