Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 23(4): 661-668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33420346

RESUMO

PURPOSE: To identify novel genes associated with intellectual disability (ID) in four unrelated families. METHODS: Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. RESULTS: Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. CONCLUSION: These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function.


Assuntos
Nanismo , Deficiência Intelectual , Ubiquitina-Proteína Ligases/genética , Animais , Criança , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Hipotonia Muscular , Fenótipo , Síndrome , Sequenciamento do Exoma
2.
Eur J Med Genet ; 63(1): 103624, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30690204

RESUMO

The Na+/K+- ATPase acts as an ion pump maintaining the essential plasma membrane potential in all mammalian cell types, and is essential for many cellular functions. There are four α isoforms (α1, α2, α3 and α4) with distinct expression patterns, kinetic properties and substrate affinity. The α2-isoform is encoded by ATP1A2 and evidence supports its utmost importance in Cl- homeostasis in neurons, and in the function of respiratory neurons at birth. Monallelic pathogenic variants in ATP1A2 are associated with familial hemiplegic migraine type 2 (FHM2) and on rare occasions with alternating hemiplegia of childhood 1 (AHC1). To date, no instances of biallelic loss of function variants have been reported in humans. However, Atp1a2 homozygous loss of function knockout mice (α2-/- mice) show severe motor deficits, with lack of spontaneous movements, and are perinatally lethal due to absent respiratory activity. In this report we describe three newborns from two unrelated families, who died neonatally, presenting in utero with an unusual form of fetal hydrops, seizures and polyhydramnios. At birth they had multiple joint contractures (e.g. arthrogryposis), microcephaly, malformations of cortical development, dysmorphic features and severe respiratory insufficiency. Biallelic loss of function variants in ATP1A2, predicted to be pathogenic were found on whole exome sequencing. We propose that this is a distinctive new syndrome caused by complete absence of Na+/K+- ATPase α2-isoform expression.


Assuntos
Artrogripose/genética , Hidropisia Fetal/genética , Microcefalia/genética , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/genética , Alelos , Animais , Artrogripose/patologia , Criança , Feminino , Predisposição Genética para Doença , Humanos , Hidropisia Fetal/patologia , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Camundongos , Microcefalia/patologia , Enxaqueca com Aura/patologia , Fenótipo , Gravidez , Isoformas de Proteínas/genética , Sequenciamento do Exoma
3.
Mol Syndromol ; 8(5): 244-252, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28878608

RESUMO

In the last few decades, different methods for the detection of genomic imbalances, such as the microdeletion syndromes, were developed. The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome and presents wide clinical heterogeneity. The aim of this study was to describe 4 unusual cases of genomic imbalances found in individuals with suspected microdeletion syndromes. Different methods were necessary to complete the diagnosis and to obtain information for genetic counseling. The study was retrospective and descriptive. From August 2014 to December 2015, 39 individuals were assessed using FISH and/or MLPA; in 15 cases, chromosomal microarray (CMA) analysis was carried out. Of 39 registered individuals, we found deletions in the 22q11.2 region in 10 individuals (8 individuals with 22q11.2DS and 2 individuals presenting with atypical deletions in the 22q11.2 region: 1 distal deletion and 1 central deletion). In one case with a typical 22q11.2 deletion, a familial balanced translocation was detected. In another case without a 22q11.2 deletion, a 6p duplication concomitant with a 9p deletion was detected by CMA. Clinical data are reported and diagnostic investigations are discussed. Essential aspects for the understanding of different diagnostic techniques of genomic imbalances are considered, and the 4 cases described underline the complexity and the difficulties involved in the diagnostic process. The approach is informative for clinical practice and may be applied in other contexts of genomic imbalance investigation in microdeletion syndromes.

4.
J Dev Behav Pediatr ; 36(7): 544-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26263419

RESUMO

Copy number variation studies of known disorders have the potential to improve the characterization of clinical phenotypes and may help identifying candidate genes and their pathways. The authors described a child with congenital heart disease, microcephaly, facial dysmorphisms, developmental delay, learning difficulties, and behavioral problems. There was initially a clinical suspicion of 22q11.2 deletion syndrome (22q11.2 DS), but molecular cytogenetic analysis (array genomic hybridization [aGH]) showed the presence of a de novo 3.6-Mb interstitial microdeletion in 8p23.1. The main features of 8p23.1 DS include congenital heart disease and behavioral problems, in addition to minor dysmorphisms and mental delay. Therefore, this article highlights the application of aGH to investigate 8p23.1 deletion in nonconfirmed 22q11.2 DS patients presenting neurobehavioral disorders, congenital cardiopathy, and minor dysmorphisms.


Assuntos
Deficiências do Desenvolvimento/genética , Cardiopatias/genética , Microcefalia/genética , Comportamento Problema , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 8/genética , Hibridização Genômica Comparativa , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Face/patologia , Feminino , Cardiopatias/congênito , Humanos
5.
J Pediatr Genet ; 4(1): 17-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27617111

RESUMO

Velocardiofacial syndrome is one of the recognized forms of chromosome 22q11.2 deletion syndrome (22q11.2 DS) and has an incidence of 1 of 4,000 to 1 of 6,000 births. Nevertheless, the 22q11 deletion is not found in several patients with a 22q11.2 DS phenotype. In this situation, other chromosomal aberrations and/or mutations in the T-box 1 transcription factor C (TBX1) gene have been detected in some patients. A similar phenotype to that of the 22q11.2 DS has been reported in animal models with mutations in fibroblast growth factor 8 (Fgf8) gene. To date, FGF8 mutations have not been investigated in humans. We tested a strategy to perform laboratory testing to reduce costs in the investigation of patients presenting with the 22q11.2 DS phenotype. A total of 109 individuals with clinical suspicion were investigated using GTG-banding karyotype, fluorescence in situ hybridization, and/or multiplex ligation-dependent probe amplification. A conclusive diagnosis was achieved in 33 of 109 (30.2%) cases. In addition, mutations in the coding regions of TBX1 and FGF8 genes were investigated in selected cases where 22q11.2 deletion had been excluded, and no pathogenic mutations were detected in both genes. This study presents a strategy for molecular genetic characterization of patients presenting with the 22q11.2 DS using different laboratory techniques. This strategy could be useful in different countries, according to local resources. Also, to our knowledge, this is the first investigation of FGF8 gene in humans with this clinical suspicion.

6.
Eur J Pediatr ; 172(7): 927-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23440478

RESUMO

The 22q11.2 deletion is the most frequent interstitial deletion in humans and presents a wide phenotypic spectrum, with over 180 clinical manifestations described. Distinct studies have detected frequencies of the deletion ranging from 0 % to 75 %, depending on the studied population and selection criteria adopted. Due to the lack of consensus in this matter, several studies have been conducted aiming to define which patients would be eligible for screening; however, the issue is still up for debate. In order to contribute to the delineation of possible clinical and dysmorphologic guidelines to optimize decision making in the clinical setting, 194 individuals with variable features of the 22q11.2 deletion syndromes (22q11.2DS) were evaluated. Group I, clinical suspicion of 22q11.2DS with palatal anomalies; Group II, clinical suspicion without palatal anomalies; Group III, cardiac malformations associated with the 22q11.2DS; and Group IV, juvenile-onset schizophrenia. Multiplex ligation-dependent probe amplification was used for screening the 22q11.2 deletion, which was detected in 45 patients (23.2 %), distributed as such: Group I, 35/101 (34.7 %); Group II, 4/18 (22.2 %); Group III, 6/52 (11.5 %); and Group IV, 0/23 (0 %). Clinical data were analyzed by frequency distribution and statistically. Based on the present results and on the review of the literature, we propose a set of guidelines for screening patients with distinct manifestations of the 22q11.2DS in order to maximize resources. In addition, we report the dysmorphic features which we found to be statistically correlated with the presence of the 22q11.2DS.


Assuntos
Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/diagnóstico , Testes Genéticos , Cardiopatias Congênitas , Palato/anormalidades , Guias de Prática Clínica como Assunto , Esquizofrenia Infantil , Adolescente , Adulto , Criança , Pré-Escolar , Bandeamento Cromossômico , Síndrome de DiGeorge/fisiopatologia , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA