Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 22(6): 1682-1694, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37017314

RESUMO

To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.


Assuntos
Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteômica , Proteoma/genética , Proteoma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Simbiose/genética
2.
Braz J Microbiol ; 53(3): 1633-1643, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35704174

RESUMO

The acidity of soils significantly reduces the productivity of legumes mainly because of the detrimental effects of hydrogen ions on the legume plants, leading to the establishment of an inefficient symbiosis and poor biological nitrogen fixation. We recently reported the analysis of the fully sequenced genome of Rhizobium favelukesii LPU83, an alfalfa-nodulating rhizobium with a remarkable ability to grow, nodulate and compete in acidic conditions. To gain more insight into the genetic mechanisms leading to acid tolerance in R. favelukesii LPU83, we constructed a transposon mutant library and screened for mutants displaying a more acid-sensitive phenotype than the parental strain. We identified mutant Tn833 carrying a single-transposon insertion within LPU83_2531, an uncharacterized short ORF located immediately upstream from ubiF homolog. This gene encodes a protein with an enzymatic activity involved in the biosynthesis of ubiquinone. As the transposon was inserted near the 3' end of LPU83_2531 and these genes are cotranscribed as a part of the same operon, we hypothesized that the phenotype in Tn833 is most likely due to a polar effect on ubiF transcription.We found that a mutant in ubiF was impaired to grow at low pH and other abiotic stresses including 5 mM ascorbate and 0.500 mM Zn2+. Although the ubiF mutant retained the ability to nodulate alfalfa and Phaseolus vulgaris, it was unable to compete with the R. favelukesii LPU83 wild-type strain for nodulation in Medicago sativa and P. vulgaris, suggesting that ubiF is important for competitiveness. Here, we report for the first time an ubiF homolog being essential for nodulation competitiveness and tolerance to specific stresses in rhizobia.


Assuntos
Rhizobium , Simbiose , Ácidos/farmacologia , Medicago sativa/metabolismo , Fixação de Nitrogênio/genética , Rhizobium/genética , Simbiose/genética
3.
Environ Microbiol ; 24(3): 1247-1262, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34725905

RESUMO

Antimicrobial resistance represents a major global health concern and environmental bacteria are considered a source of resistance genes. Carbapenems are often used as the last antibiotic option to treat multidrug-resistant bacteria. Metallo-ß-lactamases (MBLs) are able to render resistance to almost all ß-lactam antibiotics, including carbapenems. Unfortunately, there are no inhibitors against MBLs for clinical use. Subclass B2 MBLs are the only enzymes working as strict carbapenemases, under-represented, encoded in chromosome genes and only functional as mono-zinc enzymes. Despite current efforts in MBLs inhibitor development, B2 carbapenemase activity is especially difficult to suppress, even in vitro. In this study we characterized BioF, a novel subclass B2 MBL identified in a new environmental Pseudomonas sp. strain isolated from an on-farm biopurification system (BPS). Although blaBioF is most likely a chromosomal gene, it is found in a genomic island and may represent a step previous to the horizontal transmission of B2 genes. The new B2 MBL is active as a mono-zinc enzyme and is a potent carbapenemase with incipient activity against some cephalosporins. BioF activity is not affected by excess zinc and is only inhibited at high metal chelator concentrations. The discovery and characterization of B2 MBL BioF as a potent carbapenemase in a BPS bacterial isolate emphasizes the importance of exploring antibiotic resistances existing in the environmental microbiota under the influence of human activities before they could emerge clinically.


Assuntos
Pseudomonas , beta-Lactamases , Antibacterianos/farmacologia , Carbapenêmicos , Fazendas , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas/genética , beta-Lactamases/genética
4.
Food Technol Biotechnol ; 59(4): 519-529, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35136375

RESUMO

RESEARCH BACKGROUND: In recent decades, laccases (p-diphenol-dioxygen oxidoreductases; EC 1.10.3.2) have attracted the attention of researchers due to their wide range of biotechnological and industrial applications. Laccases can oxidize a variety of organic and inorganic compounds, making them suitable as biocatalysts in biotechnological processes. Even though the most traditionally used laccases in the industry are of fungal origin, bacterial laccases have shown an enormous potential given their ability to act on several substrates and in multiple conditions. The present study aims to characterize a plasmid-encoded laccase-like multicopper oxidase (LMCO) from Ochrobactrum sp. BF15, a bacterial strain previously isolated from polluted soil. EXPERIMENTAL APPROACH: We used in silico profile hidden Markov models to identify novel laccase-like genes in Ochrobactrum sp. BF15. For laccase characterization, we performed heterologous expression in Escherichia coli, purification and activity measurement on typical laccase substrates. RESULTS AND CONCLUSIONS: Profile hidden Markov models allowed us to identify a novel LMCO, named Lac80. In silico analysis of Lac80 revealed the presence of three conserved copper oxidase domains characteristic of three-domain laccases. We successfully expressed Lac80 heterologously in E. coli, allowing us to purify the protein for further activity evaluation. Of thirteen typical laccase substrates tested, Lac80 showed lower activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), pyrocatechol, pyrogallol and vanillic acid, and higher activity on 2,6-dimethoxyphenol. NOVELTY AND SCIENTIFIC CONTRIBUTION: Our results show Lac80 as a promising laccase for use in industrial applications. The present work shows the relevance of bacterial laccases and highlights the importance of environmental plasmids as valuable sources of new genes encoding enzymes with potential use in biotechnological processes.

5.
FEMS Microbiol Ecol ; 94(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300936

RESUMO

Rapid dissemination and emergence of novel antibiotic resistance genes among bacteria are rising problems worldwide. Since their discovery in clinical isolates in the late 1980s, class 1 integrons have been found in a wide range of bacterial genera and have been extensively studied as contributors to dissemination of antibiotic resistance. The present study aimed to investigate the presence and structure of class 1 integrons in plasmid-carrying bacterial isolates obtained from a biopurification system used for decontamination of pesticide-contaminated water as well as their possible role as reservoir of antimicrobial resistance gene cassettes. A total of 35 representative isolates were screened for the presence of class 1 integron integrase encoded by intI1. PCR and DNA sequencing revealed the presence of six class 1 integrons with four variable regions: 5΄CS-aadA1b-3΄CS, 5΄CS-aadA2-3΄CS, 5΄CS-aadA11cΔ-3΄CS and 5΄CS-dfrB3-aadA1di-catB2-aadA6k-3΄CS, the last two being unseen arrays of antimicrobial resistance gene cassettes associated with novel environmental alleles of intI1. These four class 1 integrons were identified as being present in four different genera, including Ochrobactrum, and Variovorax, where class 1 integrons have not been previously reported. The results provide evidence of the biopurification systems as a tank of class 1 integron carrying strains and novel environmental class 1 integron integrases associated with antimicrobial resistance gene cassette arrays.


Assuntos
Bactérias/genética , Integrons , Microbiologia do Solo , Animais , Bactérias/classificação , Bactérias/enzimologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fazendas , Integrases/genética , Integrases/metabolismo , Gado , Esterco/microbiologia , Plasmídeos/genética
6.
Syst Appl Microbiol ; 40(5): 297-307, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28648724

RESUMO

Desmodium spp. are leguminous plants belonging to the tribe Desmodieae of the subfamily Papilionoideae. They are widely distributed in temperated and subtropical regions and are used as forage plants, for biological control, and in traditional folk medicine. The genus includes pioneer species that resist the xerothermic environment and grow in arid, barren sites. Desmodium species that form nitrogen-fixing symbiosis with rhizobia play an important role in sustainable agriculture. In Argentina, 23 native species of this genus have been found, including Desmodium incanum. In this study, a total of 64 D. incanum-nodulating rhizobia were obtained from root nodules of four Argentinean plant populations. Rhizobia showed different abiotic-stress tolerances and a remarkable genetic diversity using PCR fingerprinting, with more than 30 different amplification profiles. None of the isolates were found at more than one site, thus indicating a high level of rhizobial diversity associated with D. incanum in Argentinean soils. In selected isolates, 16S rDNA sequencing and whole-cell extract MALDI TOF analysis revealed the presence of isolates related to Bradyrhizobium elkanii, Bradyrhizobium japonicum, Bradyrhizobium yuanmingense, Bradyrhizobium liaoningense, Bradyrhizobium denitrificans and Rhizobium tropici species. In addition, the nodC gene studied in the selected isolates showed different allelic variants. Isolates were phenotypically characterized by assaying their growth under different abiotic stresses. Some of the local isolates were remarkably tolerant to high temperatures, extreme pH and salinity, which are all stressors commonly found in Argentinean soils. One of the isolates showed high tolerance to temperature and extreme pH, and produced higher aerial plant dry weights compared to other inoculated treatments. These results indicated that local isolates could be efficiently used for D. incanum inoculation.


Assuntos
Fabaceae/microbiologia , Rhizobium , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética , Argentina , Proteínas de Bactérias/genética , DNA Bacteriano/genética , N-Acetilglucosaminiltransferases/genética , Fixação de Nitrogênio/fisiologia , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Plasmid ; 80: 16-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25957823

RESUMO

Biopurification systems (BPS) are complex soil-related and artificially-generated environments usually designed for the removal of toxic compounds from contaminated wastewaters. The present study has been conducted to isolate and characterize a collection of cultivable plasmid-carrying bacterial isolates recovered from a BPS established for the decontamination of wastewater generated in a farmyard. Out of 1400 isolates, a collection of 75 plasmid-containing bacteria was obtained, of which 35 representative isolates comprising in total at least 50 plasmids were chosen for further characterization. Bacterial hosts were taxonomically assigned by 16S ribosomal RNA gene sequencing and phenotypically characterized according to their ability to grow in presence of different antibiotics and heavy metals. The study demonstrated that a high proportion of the isolates was tolerant to antibiotics and/or heavy metals, highlighting the on-farm BPS enrichment in such genetic traits. Several plasmids conferring such resistances in the bacterial collection were detected to be either mobilizable or selftransmissible. Occurrence of broad host range plasmids of the incompatibility groups IncP, IncQ, IncN and IncW was examined with positive results only for the first group. Presence of the IS1071 insertion sequence, frequently associated with xenobiotics degradation genes, was detected in DNA obtained from 24 of these isolates, strongly suggesting the presence of yet-hidden catabolic activities in the collection of isolates. The results showed a remarkable diversity in the plasmid mobilome of cultivable bacteria in the BPS with the presence of abundant resistance markers of different types, thus providing a suitable environment to investigate the genetic structure of the mobile genetic pool in a model on-farm biofilter for wastewater decontamination in intensive agricultural production.


Assuntos
Gammaproteobacteria/isolamento & purificação , Plasmídeos/genética , Agricultura , Biodegradação Ambiental , DNA Bacteriano/genética , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/genética , Metais Pesados/farmacologia , Testes de Sensibilidade Microbiana , Tipagem Molecular , Resíduos de Praguicidas/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
8.
J Microbiol Methods ; 93(1): 9-11, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384825

RESUMO

The preparation of plasmid-borne RIVET libraries can be troublesome when high genomic coverages are needed. We present here the construction and functional validation of a new set of miniTn5 promoter traps to generate tnpR-based RIVET libraries. The ability to generate tnpR transcriptional fusions by transposition will significantly facilitate the setup of RIVET studies in those bacteria where Tn5 transposition is operative.


Assuntos
Genética Microbiana/métodos , Bactérias Gram-Negativas/genética , Biologia Molecular/métodos , Regiões Promotoras Genéticas , Elementos de DNA Transponíveis , Fusão Gênica , Biblioteca Gênica
9.
Plasmid ; 67(3): 199-210, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22233546

RESUMO

Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.


Assuntos
DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Bactérias Gram-Negativas/genética , Sinorhizobium meliloti/genética , Sinorhizobium/genética , Microbiologia do Solo , Sequência de Bases , Conjugação Genética , DNA Bacteriano/genética , Transferência Genética Horizontal , Bactérias Gram-Negativas/classificação , Medicago/microbiologia , Dados de Sequência Molecular , Fixação de Nitrogênio , Filogenia , Raízes de Plantas/microbiologia , Plasmídeos , Sinorhizobium/classificação , Sinorhizobium meliloti/classificação , Simbiose/genética , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA