Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39065724

RESUMO

A glioma is a type of tumor that acts on the Central Nervous System (CNS) in a highly aggressive manner. Gliomas can occasionally be inaccurately diagnosed and treatments have low efficacy, meaning that patients exhibit a survival of less than one year after diagnosis. Due to factors such as intratumoral cell variability, inefficient chemotherapy drugs, adaptive resistance development to drugs and tumor recurrence after resection, the search continues for new drugs that can inhibit glioma cell growth. As such, analogues of endocannabinoids, such as fatty acid amides (FAAs), represent interesting alternatives for inhibiting tumor growth, since FAAs can modulate several metabolic pathways linked to cancer and, thus, may hold potential for managing glioblastoma. The aim of this study was to investigate the in vitro effects of two fatty ethanolamides (FAA1 and FAA2), synthetized via direct amidation from andiroba oil (Carapa guianensis Aublet), on C6 glioma cells. FAA1 and FAA2 reduced C6 cell viability, proliferation and migratory potential in a dose-dependent manner and were not toxic to normal retina glial cells. Both FAAs caused apoptotic cell death through the loss of mitochondrial integrity (ΔΨm), probably by activating cannabinoid receptors, and inhibiting the PI3K/Akt pathway. In conclusion, FAAs derived from natural products may have the potential to treat glioma-type brain cancer.

2.
Toxics ; 11(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38133368

RESUMO

Human intoxication to mercury is a worldwide health problem. In addition to the type and length of exposure, the genetic background plays an important role in mercury poisoning. However, reviews on the genetic influence in mercury toxicity are scarce and not systematic. Therefore, this review aimed to systematically overview the most recent evidence on the genetic influence (using single nucleotide polymorphisms, SNPs) on human mercury poisoning. Three different databases (PubMed/Medline, Web of Science and Scopus) were searched, and 380 studies were found that were published from 2015 to 2022. After applying inclusion/exclusion criteria, 29 studies were selected and data on characteristics (year, country, profile of participants) and results (mercury biomarkers and quantitation, SNPs, main findings) were extracted and analyzed. The largest number of studies was performed in Brazil, mainly involving traditional populations of the Tapajós River basin. Most studies evaluated the influence of the SNPs related to genes of the glutathione system (GST, GPx, etc.), the ATP-binding cassette transporters and the metallothionein proteins. The recent findings regarding other SNPs, such as those of apolipoprotein E and brain-derived neurotrophic factor genes, are also highlighted. The importance of the exposure level is discussed considering the possible biphasic behavior of the genetic modulation phenomena that could explain some SNP associations. Overall, recommendations are provided for future studies based on the analysis obtained in this scoping review.

3.
Ecotoxicol Environ Saf ; 256: 114895, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37062263

RESUMO

Amazon conservation is essential for the global future. Mercury is currently among the worst global pollutants and most (78.5%) of the South-American emissions are from the Amazon. Current Brazilian legislation on mining activities and trade of gold, and economic interests in soy, beef and large-scale projects such as dams, are key influences in mercury mobilization and emissions in the Amazon with the potential to affect the global environment. However, banning mercury in mining, while desirable, is not an efficient strategy if no other action is taken. The interconnected issues, such as exports (soy, beef and gold) and energy generation, must be addressed together to provide effective protection for human health and the environment. Realistically, to improve mercury emissions in the Amazon, we must stop looking solely at "the single story" (a limited view of reality) of supposedly "artisanal and small-scale gold mining" in the region and understand the complex economic, social, political, and international aspects of this problem. We propose some recommendations for international agencies, governments, communities and the private sector.


Assuntos
Poluentes Ambientais , Mercúrio , Animais , Bovinos , Humanos , Mercúrio/análise , Poluentes Ambientais/análise , Brasil , Mineração , Ouro
4.
Artigo em Inglês | MEDLINE | ID: mdl-36901217

RESUMO

The COVID-19 pandemic affected billions of people worldwide, and exposure to toxic metals has emerged as an important risk factor for COVID-19 severity. Mercury is currently ranked as the third toxic substance of global concern for human health, and its emissions to the atmosphere have increased globally. Both COVID-19 and mercury exposure present a high prevalence in similar regions: East and Southeast Asia, South America and Sub-Saharan Africa. Since both factors represent a multiorgan threat, a possible synergism could be exacerbating health injuries. Here, we discuss key aspects in mercury intoxication and SARS-CoV-2 infection, describing the similarities shared in clinical manifestations (especially neurological and cardiovascular outcomes), molecular mechanisms (with a hypothesis in the renin-angiotensin system) and genetic susceptibility (mainly by apolipoprotein E, paraoxonase 1 and glutathione family genes). Literature gaps on epidemiological data are also highlighted, considering the coincident prevalence. Furthermore, based on the most recent evidence, we justify and propose a case study of the vulnerable populations of the Brazilian Amazon. An understanding of the possible adverse synergism between these two factors is crucial and urgent for developing future strategies for reducing disparities between developed and underdeveloped/developing countries and the proper management of their vulnerable populations, particularly considering the long-term sequelae of COVID-19.


Assuntos
COVID-19 , Mercúrio , Humanos , Brasil , Exposição Ambiental , Ouro , Mercúrio/efeitos adversos , Mercúrio/análise , Mercúrio/toxicidade , Pandemias , SARS-CoV-2
5.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557983

RESUMO

Gliomas are the most common primary malignant brain tumors in adults, and have a poor prognosis, despite the different types of treatment available. There is growing demand for new therapies to treat this life-threatening tumor. Quinone derivatives from plants have received increased interest as potential anti-glioma drugs, due to their diverse pharmacologic activities, such as inhibiting cell growth, inflammation, tumor invasion, and promoting tumor regression. Previous studies have demonstrated the anti-glioma activity of Eleutherine plicata, which is related to three main naphthoquinone compounds-eleutherine, isoeleutherine, and eleutherol-but their mechanism of action remains elusive. Thus, the aim of this study was to investigate the mechanism of action of eleutherine on rat C6 glioma. In vitro cytotoxicity was evaluated by MTT assay; morphological changes were evaluated by phase-contrast microscopy. Apoptosis was determined by annexin V-FITC-propidium iodide staining, and antiproliferative effects were assessed by wound migration and colony formation assays. Protein kinase B (AKT/pAKT) expression was measured by western blot, and telomerase reverse transcriptase mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Eleutherine reduced C6 cell proliferation in a dose-dependent manner, suppressed migration and invasion, induced apoptosis, and reduced AKT phosphorylation and telomerase expression. In summary, our results suggest that eleutherine has potential clinical use in treating glioma.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Glioma/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células , Apoptose , Neoplasias Encefálicas/patologia
6.
Molecules ; 27(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684543

RESUMO

Seizures and epilepsy are some of the most common serious neurological disorders, with approximately 80% of patients living in developing/underdeveloped countries. However, about one in three patients do not respond to currently available pharmacological treatments, indicating the need for research into new anticonvulsant drugs (ACDs). The GABAergic system is the main inhibitory system of the brain and has a central role in seizures and the screening of new ACD candidates. It has been demonstrated that the action of agents on endocannabinoid receptors modulates the balance between excitatory and inhibitory neurotransmitters; however, studies on the anticonvulsant properties of endocannabinoids from plant oils are relatively scarce. The Amazon region is an important source of plant oils that can be used for the synthesis of new fatty acid amides, which are compounds analogous to endocannabinoids. The synthesis of such compounds represents an important approach for the development of new anticonvulsant therapies.


Assuntos
Endocanabinoides , Epilepsia , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Endocanabinoides/uso terapêutico , Epilepsia/tratamento farmacológico , Humanos , Óleos de Plantas/uso terapêutico , Plantas , Convulsões/tratamento farmacológico
7.
Neuroimmunomodulation ; 29(1): 15-20, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34350891

RESUMO

Leprosy, also known as Hansen's disease, continues to have a substantial impact on infectious diseases throughout the world. Leprosy is a chronic granulomatous infection caused by Mycobacterium leprae and shows a wide clinical and immunopathological spectrum related to the immune response of the host. This disease affects the skin and other internal organs with a predilection to infect Schwann cells, which play an active role during axonal degeneration, affecting peripheral nerves and promoting neurological damage. This chronic inflammation influences immune function, leading to neuroimmune disorders. Leprosy is also associated with neuroimmune reactions, including type 1 (reverse) and type 2 (erythema nodosum leprosum) reactions, which are immune-mediated inflammatory complications that can occur during the disease and appear to worsen dramatically; these complications are the main concerns of patients. The reactions may induce neuritis and neuropathic pain that progressively worsen with irreversible deformity and disabilities responsible for the immunopathological damage and glial/neuronal death. However, the neuronal damage is not always associated with the reactional episode. Also, the efficacy in the treatment of reactions remains low because of the nonexistence of a specific treatment and missing informations about the immunopathogenesis of the reactional episode. There is increasing evidence that peripheral neuron dysfunction strongly depends on the activity of neurotrophins. The most important neurotrophin in leprosy is nerve growth factor (NGF), which is decreased in the course of leprosy, as well as the presence of autoantibodies against NGF in all clinical forms of leprosy and neuroimmune reactions. The levels of autoantibodies against NGF are decreased by the immunomodulatory activity of cyclosporin A, which mainly controls pain and improves motor function and sensitivity. Therefore, the suppression of anti-NGF and the regulation of NGF levels can be attractive targets for immunomodulatory treatment and for controlling the neuroimmune reactions of leprosy, although further studies are needed to clarify this point.


Assuntos
Ciclosporina , Hanseníase , Humanos , Hanseníase/complicações , Hanseníase/tratamento farmacológico , Mycobacterium leprae , Neuritos/patologia , Células de Schwann/patologia
8.
J Clin Med ; 10(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34441925

RESUMO

The metabolic syndrome (MetS) epidemic is a global challenge. Although developing countries (including Brazil, India, and South Africa) present a higher proportion of deaths by cardiovascular diseases than developed countries, most of our knowledge is from these developed countries. Amazonian riverine populations (ARP), as well as other vulnerable populations of the Southern Hemisphere, share low-income and traditional practices, among other features. This large cross-sectional study of ARP (n = 818) shows high prevalence of hypertension (51%) and obesity (23%). MetS was diagnosed in 38% of participants (especially in women and 60-69 years-old individuals) without the influence of ancestry. Only 7-8% of adults had no cardio-metabolic abnormalities related to MetS. Atherogenic dyslipidemia (low HDL-cholesterol) was generally observed, including in individuals without MetS. Still, slight differences were detected between settings with a clear predominance of hypertension in Tucuruí. Hypotheses on possible genetic influence and factors (nutrition transition and environmental pollutants -mercury) are proposed for future studies. Moreover, a roadmap to MetS progression based on the most prevalent components is provided for the development of tailored interventions in the Amazon (initially, individuals would present low HDL-cholesterol levels, later progressing to increased blood pressure characterizing hypertension, and ultimately reaching MetS with obesity). Our alarming results support the need to improve our knowledge on these vulnerable populations.

9.
Foods ; 10(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066557

RESUMO

The Amazon is the largest tropical forest in the world and a source of healthy food, such as fruits and fish. Surprisingly, the Amazonian riverine population present an increased prevalence (as high as 58%) of non-communicable diseases, such as hypertension and insulin resistance, even higher than that described for the urban population of the Amazon. Therefore, this work aimed to analyze the nutritional status and associated risk of the riverine population. Body mass index, waist circumference (WC), waist-to-hip ratio, and neck circumference (NC) were evaluated, and risk analysis was assayed. Furthermore, data about occupation and the prevalence of consumers of the different groups of food were analyzed. All anthropometric parameters revealed high proportions of individuals at risk, WC and NC being the factors that had more high-risk women and men, respectively. Our data confirmed the characteristic profile of the riverine communities with a high number of fish consumers, but also observed different patterns probably associated to a phenomenon of nutrition transition. Based on our data, some nudge interventions that take into account the principles of behavior analysis are discussed and proposed for these populations, aiming to improve the nutritional status and avoid the long-term consequences of the results showed by this work.

10.
Pathogens ; 10(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071265

RESUMO

During tuberculosis, Mycobacterium uses host macrophage cholesterol as a carbon and energy source. To mimic these conditions, Mycobacterium smegmatis can be cultured in minimal medium (MM) to induce cholesterol consumption in vitro. During cultivation, M. smegmatis consumes MM cholesterol and changes the accumulation of cell wall compounds, such as PIMs, LM, and LAM, which plays an important role in its pathogenicity. These changes lead to cell surface hydrophobicity modifications and H2O2 susceptibility. Furthermore, when M. smegmatis infects J774A.1 macrophages, it induces granuloma-like structure formation. The present study aims to assess macrophage molecular disturbances caused by M. smegmatis after cholesterol consumption, using proteomics analyses. Proteins that showed changes in expression levels were analyzed in silico using OmicsBox and String analysis to investigate the canonical pathways and functional networks involved in infection. Our results demonstrate that, after cholesterol consumption, M. smegmatis can induce deregulation of protein expression in macrophages. Many of these proteins are related to cytoskeleton remodeling, immune response, the ubiquitination pathway, mRNA processing, and immunometabolism. The identification of these proteins sheds light on the biochemical pathways involved in the mechanisms of action of mycobacteria infection, and may suggest novel protein targets for the development of new and improved treatments.

11.
Mol Neurobiol ; 58(9): 4293-4308, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33990914

RESUMO

Intoxication by heavy metals such as methylmercury (MeHg) is recognized as a global health problem, with strong implications in central nervous system pathologies. Most of these neuropathological conditions involve vascular, neurotransmitter recycling, and oxidative balance disruption leading to accelerated decline in fine balance, and learning, memory, and visual processes as main outcomes. Besides neurons, astrocytes are involved in virtually all the brain processes and perform important roles in neurological response following injuries. Due to astrocytes' strategic functions in brain homeostasis, these cells became the subject of several studies on MeHg intoxication. The most heterogenous glial cells, astrocytes, are composed of plenty of receptors and transporters to dialogue with neurons and other cells and to monitor extracellular environment responding tightly through fluctuation of cytosolic ions. The overall toxicity of MeHg might be determined on the basis of the balance between MeHg-mediated injury to neurons and protective responses from astrocytes. Although the role of neurons in MeHg intoxication is relatively well-established, the role of the astrocytes is only beginning to be understood. In this review, we update the information on astroglial modulation of the MeHg-induced neurotoxicity, providing remarks on their protective and deleterious roles and insights for future studies.


Assuntos
Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Astrócitos/patologia , Encéfalo/patologia , Humanos , Neurônios/patologia
12.
Ecotoxicol Environ Saf ; 208: 111686, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396018

RESUMO

Human exposure to mercury is a major public health concern, causing neurological outcomes such as motor and visual impairment and learning disabilities. Currently, human exposure in the Amazon is among the highest in the world. A recent systematic review (doi:10.1016/j.jtemb.2018.12.001), however, highlighted the lack of high-quality studies on mercury-associated neurotoxicity. There is, therefore, a need to improve research and much to still learn about how exposure correlates with disease. In this review, we discuss studies evaluating the associations between neurological disturbances and mercury body burden in Amazonian populations, to generate recommendations for future studies. A systematic search was performed during July 2020, in Pubmed/Medline, SCOPUS and SCIELO databases with the terms (mercury*) and (Amazon*). Four inclusion criteria were used: original article (1), with Amazonian populations (2), quantifying exposure (mercury levels) (3), and evaluating neurological outcomes (4). The extracted data included characteristics (as year or origin of authorship) and details of the research (as locations and type of participants or mercury levels and neurological assessments). Thirty-four studies, most concentrated within three main river basins (Tapajós, Tocantins, and Madeira) and related to environmental exposure, were found. Mercury body burden was two to ten times higher than recommended and main neurological findings were cognitive, vision, motor, somatosensory and emotional deficits. Important insights are described that support novel approaches to researching mercury exposure and intoxication, as well as prevention and intervention strategies. As a signatory country to the Minamata Convention, Brazil has the opportunity to play a central role in improving human health and leading the research on mercury intoxication.


Assuntos
Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Intoxicação do Sistema Nervoso por Mercúrio/etiologia , Mercúrio/toxicidade , Rios/química , Carga Corporal (Radioterapia) , Brasil , Exposição Ambiental/análise , Poluentes Ambientais/análise , Feminino , Cabelo/química , Humanos , Masculino , Mercúrio/análise , Intoxicação do Sistema Nervoso por Mercúrio/epidemiologia , Intoxicação do Sistema Nervoso por Mercúrio/metabolismo
13.
Environ Int ; 146: 106223, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120229

RESUMO

Mercury is among the ten most dangerous chemicals for public health, and is a priority concern for the 128 signatory countries of the Minamata Convention. Mercury emissions to the atmosphere increased 20% between 2010 and 2015, with South America, Sub-Saharan Africa and Southeast Asia as the main contributors. Approximately 80% of the total mercury emissions in South America is from the Amazon, where the presence of the metal is ubiquitous and highly dynamic. The presence of this metal is likely increasing, with global consequences, due to events of the last two years including extensive biomass burning and deforestation, as well as mining activities and the construction of large-scale projects, such as dams. Here we present a concise profile of this mobilization, highlighting the human exposure to this metal in areas without mining history. Mercury reaches the food chain in its most toxic form, methylmercury, intoxicating human populations through the intake of contaminated fish. Amazonian populations present levels over 6 ppm of hair mercury and, according to the 175:250:5:1 ratio for methylmercury intake : mercury hair : mercury brain : mercury blood, consume 2-6 times the internationally recognized reference doses. This exposure is alarmingly higher than that of other populations worldwide. A possible biphasic behavior of the mercury-related phenomena, with consequences that may not be observed in populations with lower levels, is hypothesized, supporting the need of improving our knowledge of this type of chronic exposure. It is urgent that we address this serious public health problem in the Amazon, especially considering that human exposure may be increasing in the near future. All actions in this region carry the potential to have global repercussions.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Exposição Ambiental/análise , Cabelo/química , Humanos , Mercúrio/análise , Mineração , América do Sul
14.
Pharmaceuticals (Basel) ; 13(3)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164340

RESUMO

Epilepsy is a chronic neurological disease characterized by excessive neuronal activity leading to seizure; about 30% of affected patients suffer from the refractory and pharmacoresistant form of the disease. The anticonvulsant drugs currently used for seizure control are associated with adverse reactions, making it important to search for more effective drugs with fewer adverse reactions. There is increasing evidence that endocannabinoids can pharmacologically modulate action against seizure and antiepileptic disorders. Therefore, the objective of this study is to investigate the anticonvulsant effects of fatty acid amides (FAAs) in a pentylenetetrazole (PTZ)-induced seizure model in mice. FAAs (FAA1 and FAA2) are obtained from Carapa guianensis oil by biocatalysis and are characterized by Fourier Transform Infrared Analysis (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS). Only FAA1 is effective in controlling the increased latency time of the first myoclonic jerk and in significantly decreasing the total duration of tonic-clonic seizures relative to the pentylenetetrazol model. Also, electrocortical alterations produced by pentylenetetrazol are reduced when treated by FAA1 that subsequently decreased wave amplitude and energy in Beta rhythm. The anticonvulsant effects of FAA1 are reversed by flumazenil, a benzodiazepine antagonist on Gamma-Aminobutyric Acid-A (GABA-A) receptors, indicating a mode of action via the benzodiazepine site of these receptors. To conclude, the FAA obtained from C. guianensis oil is promising against PTZ-induced seizures.

15.
Nutrients ; 11(11)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717801

RESUMO

Methylmercury (MeHg) exposure is a serious problem of public health, especially in the Amazon. Exposure in riverine populations is responsible for neurobehavioral abnormalities. It was hypothesized that consumption of Amazonian fruits could protect by reducing mercury accumulation. This work analyzed the effects of commercial samples of Euterpe oleracea (EO) for human consumption (10 µL/g) against MeHg i.p. exposure (2.5 mg/Kg), using neurobehavioral (open field, rotarod and pole tests), biochemical (lipid peroxidation and nitrite levels), aging-related (telomerase reverse transcriptase (TERT) mRNA expression) and toxicokinetic (MeHg content) parameters in mice. Both the pole and rotarod tests were the most sensitive tests accompanied by increased lipid peroxidation and nitrite levels in brains. MeHg reduced TERT mRNA about 50% demonstrating a strong pro-aging effect. The EO intake, similar to that of human populations, prevented all alterations, without changing the mercury content, but avoiding neurotoxicity and premature aging of the Central Nervous System (CNS). Contrary to the hypothesis found in the literature on the possible chelating properties of Amazonian fruits consumption, the effect of EO would be essentially pharmacodynamics, and possible mechanisms are discussed. Our data already support the regular consumption of EO as an excellent option for exposed Amazonian populations to have additional protection against MeHg intoxication.


Assuntos
Euterpe , Sucos de Frutas e Vegetais , Mercúrio/toxicidade , Neurotoxinas/toxicidade , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Destreza Motora/efeitos dos fármacos , Telômero/efeitos dos fármacos
16.
Oxid Med Cell Longev ; 2019: 3614960, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428223

RESUMO

Depression is a mental disorder that affects 300 million people of all ages worldwide, but fewer than half of those with the condition receive adequate treatment. In addition, the high pharmacological refractoriness (affecting 30%-50% of patients) and toxicity of some classical antidepressants support the pursuit of new therapies. People with this condition show depressed mood, loss of pleasure, high levels of oxidative stress, and accelerated biological aging (decreased telomere length and expression of the telomerase reverse transcriptase (TERT), the enzyme responsible for telomere maintenance). Because of the close relationship between depression and oxidative stress, nutraceuticals with antioxidant properties are excellent candidates for therapy. This study represents the first investigation of the possible antidepressant and antiaging effects of commercial samples of clarified açaí (Euterpe oleracea) juice (EO). This fruit is rich in antioxidants and widely consumed. In this study, mice were treated with saline or EO (10 µL/g, oral) for 4 days and then with saline or lipopolysaccharide (0.5 mg/kg, i.p.) to induce depressive-like behavior. Only four doses of EO were enough to abolish the despair-like and anhedonia behaviors and alterations observed in electromyographic measurements. The antidepression effect of EO was similar to that of imipramine and associated with antioxidant and antiaging effects (preventing lipid peroxidation and increasing TERT mRNA expression, respectively) in three major brain regions involved in depression (hippocampus, striatum, and prefrontal cortex). Additionally, EO significantly protected hippocampal cells, preventing neuronal loss associated with the depressive-like state and nitrite level increases (an indirect marker of nitric oxide production). Moreover, EO alone significantly increased TERT mRNA expression, revealing for the first time a potent antiaging action in the brain that suggests neuroprotection against long-term age-related consequences.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Euterpe/química , Extratos Vegetais/química , Animais , Antidepressivos/química , Antidepressivos/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtorno Depressivo/patologia , Transtorno Depressivo/prevenção & controle , Euterpe/metabolismo , Frutas/química , Frutas/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Telomerase/genética , Telomerase/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
Food Chem Toxicol ; 133: 110755, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31408720

RESUMO

This study aimed to investigate the effects of Coriandrum sativum aqueous extract (CSAE) on the rat progeny of mothers exposed to methylmercury (MeHg). The presence of bioactive compounds and CSAE's antioxidant capacity been evaluated, and the offspring were assessed for their total mercury levels, motor behavioral parameters and oxidative stress in the cerebellum. The analysis of the bioactive compounds revealed significant amounts of polyphenols, flavonoids, and anthocyanins, as well as a variety of minerals. A DPPH test showed the CSAE had important antioxidant activity. The MeHg + CSAE group performed significantly better spontaneous locomotor activity, palmar grip strength, balance, and motor coordination in behavioral tests compared the MeHg group, as well as in the parameters of oxidative stress, with similar results to those of the control group. The MeHg + CSAE group also had significantly reduced mercury levels in comparison to the MeHg group. Based on the behavioral tests, which detected large locomotor, balance, and coordination improvements, as well as a reduction in oxidative stress, we conclude that CSAE had positive functional results in the offspring of rats exposed to MeHg.


Assuntos
Coriandrum/química , Intoxicação do Sistema Nervoso por Mercúrio/prevenção & controle , Compostos de Metilmercúrio/toxicidade , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Cerebelo/efeitos dos fármacos , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Exposição Materna , Atividade Motora/efeitos dos fármacos , Transtornos dos Movimentos/prevenção & controle , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Caules de Planta/química , Gravidez , Ratos , Espécies Reativas de Oxigênio/metabolismo
18.
Biomed Res Int ; 2019: 1871239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119154

RESUMO

Pathogenic species of mycobacteria are known to use the host cholesterol during lung infection as an alternative source of carbon and energy. Mycobacteria culture in minimal medium (MM) has been used as an in vitro experimental model to study the consumption of exogenous cholesterol. Once in MM, different species of mycobacteria start to consume the cholesterol and initiate transcriptional and metabolic adaptations, upregulating the enzymes of the methylcitrate cycle (MCC) and accumulating a variety of primary metabolites that are known to be important substrates for cell wall biosynthesis. We hypothesized that stressful pressure of cultures in MM is able to induce critical adaptation for the bacteria which win the infection. To identify important modifications in the biosynthesis of the cell wall, we cultured the fast-growing and nonpathogenic Mycobacterium smegmatis in MM supplemented with or without glycerol and/or cholesterol. Different from the culture in complete medium Middlebrook 7H9 broth, the bacteria when cultured in MM decreased growth and changed in the accumulation of cell wall molecules. However, the supplementation of MM with glycerol and/or cholesterol recovered the accumulation of phosphatidylinositol mannosides (PIMs) and other phospholipids but maintained growth deceleration. The biosynthesis of lipomannan (LM) and of lipoarabinomannan (LAM) was significantly modulated after culture in MM, independently of glycerol and/or cholesterol supplementation, where LM size was decreased (LM13-25KDa) and LAM increased (LAM37-100KDa), when compared these molecules after bacteria culture in complete medium (LM17-25KDa and LAM37-50KDa). These changes modified the cell surface hydrophobicity and susceptibility against H2O2. The infection of J774 macrophages with M. smegmatis, after culture in MM, induced the formation of granuloma-like structures, while supplementation with cholesterol induced the highest rate of formation of these structures. Taken together, our results identify critical changes in mycobacterial cell wall molecules after culture in MM that induces cholesterol accumulation, helping the mycobacteria to increase their capacity to form granuloma-like structures.


Assuntos
Parede Celular/metabolismo , Microambiente Celular/efeitos dos fármacos , Colesterol/farmacologia , Mycobacterium smegmatis/metabolismo , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Granuloma/metabolismo , Granuloma/patologia , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/patogenicidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-30205523

RESUMO

The Amazon River basin is the largest tropical forest in the world. Most of the Amazon belongs to Brazil, a developing country that currently faces huge challenges related to the consolidation of its universal healthcare system. Noncommunicable diseases (NCDs) are the leading cause of death in Brazil, accounting for 74% of all deaths, and NCDs are probably underestimated in Amazonian population because of their geographical isolation and the precariousness of riverine communities. Important risk factors, such as genetic susceptibility, remain undetermined in the riverine population. This study performed fasting blood sugar (FBS) and blood pressure measurements and investigated the presence of the ε4 allele of apolipoprotein E (APOE4) to determine the prevalence of diabetes, hypertension and the genetic risk of NCDs. FBS and APOE4 were measured in blood samples from 763 participants using spectrometry and real-time PCR; 67.5% showed altered measurements, and 57.9% had never been diagnosed or treated. Altered FBS was found in 28.3% of the participants, hypertension in 57.6% and APOE4 in 32.0%. The health profile of the riverine population appears to differ from that of urban population in the Amazon. Additional risk factors for NCDs, such as environmental contamination and nutritional transition, may contribute more than increased genetic susceptibility to the prevalence of altered FBS and hypertension. Our results will help guide the development of preventive strategies and governmental actions for more effective management of NCDs in the Amazon area.


Assuntos
Apolipoproteína E4/sangue , Glicemia , Pressão Sanguínea , Diabetes Mellitus/epidemiologia , Hipertensão/epidemiologia , Adulto , Alelos , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Brasil/epidemiologia , Países em Desenvolvimento , Diabetes Mellitus/sangue , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Doenças não Transmissíveis/epidemiologia , Prevalência , Fatores de Risco , Rios
20.
Neurotoxicology ; 68: 151-158, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30076900

RESUMO

Mercury is a heavy metal responsible for human intoxication worldwide and especially in the Amazon, where both natural and anthropogenic sources are responsible for exposure in riverine populations. Methylmercury is the most toxic specie of mercury with recognized neurotoxicity due to its affinity for the central nervous system. S100B protein is a well-established biomarker of brain damage and it was recently associated with mercury-related neurotoxicity. Accurate measurement is especially challenging in isolated/remote populations due to the difficulty of adequate sample conservation, therefore here we use S100B mRNA levels in blood as a way to assay mercury neurotoxicity. We hypothesized that individuals from chronically exposed populations showing mercury levels above the limit of 10 µg/g in hair would present increased levels of S100B mRNA, likely due to early brain damage. A total of 224 riverine individuals were evaluated for anthropometric data (age, body mass index), self-reported symptoms of mercury intoxication, c-reactive protein in blood, and mercury speciation in hair. Approximately 20% of participants showed mercury levels above the limit, and prevalence for most symptoms was not different between individuals exposed to high or low mercury levels. Rigorous exclusion criteria were applied to avoid confounding factors and S100B mRNA in blood was tested by RT-qPCR. Participants with ≥10 µg/g of mercury had S100B mRNA levels over two times higher than that of individuals with lower exposure. A significant correlation was also detected between mercury content in hair and S100B mRNA levels in blood, supporting the use of the latter as a possible candidate to predict mercury-induced neurotoxicity. This is the first report of an association between S100B mRNA and mercury exposure in humans. The combination of both exposure and intoxication biomarkers could provide additional support for the screening and early identification of high-risk individuals in isolated populations and subsequent referral to specialized centers.


Assuntos
Intoxicação por Mercúrio/sangue , Intoxicação por Mercúrio/diagnóstico , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Brasil , Exposição Ambiental , Feminino , Cabelo/química , Humanos , Masculino , Mercúrio/análise , Pessoa de Meia-Idade , RNA Mensageiro/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA