Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297906

RESUMO

In this work, hybrid hydrogels were synthesized with the inclusion of two types of clay materials that are considered industrial waste: red mud (RM) and ferrosilicomanganese fines (FeSiMn). These solid waste materials were characterized by studying their particle size and chemical composition, which are two key variables for their application in the synthesis of hybrid hydrogels. The morphology imaged by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), showed, in the case of RM, heterogeneous size and shape particles, with 73% of the particles having lengths of less than 5 µm. On the other hand, FeSiMn had particles with a circular morphology of nanometric sizes. Regarding the synthesis of the hybrid hydrogels, it was determined that the incorporation of small percentages (0.1%) of the inorganic phases improved the capacity of the materials to absorb water (swelling indices of 1678% and 1597% for the RM and FeSiMn hydrogels, respectively) compared to the conventional polyacrylamide hydrogel (1119%). An improvement in Vickers microhardness and storage modulus (G') was also observed: the hybrid with 10% RM presented a G', 50 times higher than conventional hydrogel. The results show the merit of RM and FeSiMn in improving the properties of hydrogels.

2.
ACS Sustain Chem Eng ; 10(25): 8135-8142, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35783106

RESUMO

Natural deep eutectics solvents (NADES), owing to their high solvation capacity and nontoxicity, are actively being sought for many technological applications. Herein, we report a series of novel NADES based on choline chloride and plant-derived polyphenols. Most of the obtained phenolic NADES have a wide liquid range and high thermal stability above 150 °C. Among them, small-sized polyphenols, like pyrogallol, vanillyl alcohol, or gentisic acid, lead to low-viscosity liquids with ionic conductivities in the order of 10-3 S cm-1 at room temperature. Interestingly, polyphenols possess valuable properties as therapeutic agents, antioxidants, adhesives, or redox-active compounds, among others. Thus, we evaluated the potential of these novel NADES for two applications: bioadhesives and corrosion protection. The mixture of choline chloride-vanillyl alcohol (2:3 mol ratio) and gelatin resulted in a highly adhesive viscoelastic liquid (adhesive stress ≈ 135 kPa), affording shear thinning behavior. Furthermore, choline chloride-tannic acid (20:1) showed an extraordinary ability to coordinate iron ions, reaching excellent corrosion inhibitive efficiencies in mild steel protection.

3.
Polymers (Basel) ; 14(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35160612

RESUMO

The sole effect of the microstructure of biodegradable isodimorphic poly(butylene succinate)-ran-poly(ε-caprolactone) random copolyesters on their rheological properties is investigated. To avoid the effect of molecular weight and temperature, two rheological procedures are considered: the activation energy of flow, Ea, and the phase angle versus complex modulus plots. An unexpected variation of both parameters with copolyester composition is observed, with respective maximum and minimum values for the 50/50 composition. This might be due to the peculiar chain configurations of the copolymers that vary as a function of comonomer distribution within the chains. The same chain configuration variations are responsible for the isodimorphic character of the copolymers in the crystalline state. Tack tests, performed to study the viability of the copolyesters as environmentally friendly hot melt adhesives (HMA), reveal a correlation with rheological results. Tackiness parameters, particularly the energy of adhesion obtained from stress-strain curves during debonding experiments, are enhanced as melt elasticity increases. Based on the carried-out analysis, the link microstructure-rheology-tackiness is established, allowing selecting the best performing HMA sample considering the polymer chemistry of the system.

4.
Polymers (Basel) ; 10(1)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-30966043

RESUMO

The crystallization and morphology of PLA-mb-PBS copolymers and their corresponding stereocomplexes were studied. The effect of flexible blocks (i.e., polybutylene succinate, PBS) on the crystallization of the copolymers and stereocomplex formation were investigated using polarized light optical microscopy (PLOM), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), and carbon-13 nuclear magnetic resonance spectroscopy (13C-NMR). The PLA and PBS multiple blocks were miscible in the melt and in the glassy state. When the PLA-mb-PBS copolymers are cooled from the melt, the PLA component crystallizes first creating superstructures, such as spherulites or axialites, which constitute a template within which the PBS component has to crystallize when the sample is further cooled down. The Avrami theory was able to fit the overall crystallization kinetics of both semi-crystalline components, and the n values for both blocks in all the samples had a correspondence with the superstructural morphology observed by PLOM. Solution mixtures of PLLA-mb-PBS and PLDA-mb-PBS copolymers were prepared, as well as copolymer/homopolymer blends with the aim to study the stereocomplexation of PLLA and PDLA chain segments. A lower amount of stereocomplex formation was observed in copolymer mixtures as compared to neat L100/D100 stereocomplexes. The results show that PBS chain segments perturb the formation of stereocomplexes and this perturbation increases with the amount of PBS in the samples. However, when relatively low amounts of PBS in the copolymer blends are present, the rate of stereocomplex formation is enhanced. This effect dissappears when higher amounts of PBS are present. The stereocomplexation was confirmed by FTIR and solid state 13C-NMR analyses.

5.
Carbohydr Polym ; 146: 231-7, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27112870

RESUMO

This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products.

6.
Carbohydr Polym ; 105: 244-52, 2014 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-24708977

RESUMO

Glass transition temperatures and physical aging of amorphous cassava starch and their blends with corn oil were assessed by differential scanning calorimetry (DSC). Two enthalpic relaxation endotherms, well separated in temperature values, were exhibited by neat amorphous cassava starch with 10.6% moisture content, evidencing two amorphous regions within the starch with different degrees of mobility. The phase segregation of these two amorphous regions was favored by added corn oil at low moisture contents during storage. The presence of amylose-lipid complexes in this matrix, may also affect the molecular dynamics of these two amorphous regions at low moisture contents. Increasing moisture content, leads to a homogeneous amorphous phase, with an aging process characterized by a single enthalpic relaxation peak. In all cases, after deleting the thermal history of the samples only one glass transition temperature was detected (during DSC second heating runs) indicating that a single homogeneous amorphous phase was attained after erasing the effects of physical aging. Trends of the enthalpic relaxation parameters were also different at the two moisture contents considered in this work.


Assuntos
Óleo de Milho/química , Manihot/química , Amido/química , Varredura Diferencial de Calorimetria , Transição de Fase , Termodinâmica , Temperatura de Transição
7.
Carbohydr Polym ; 98(1): 659-64, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23987396

RESUMO

The effect of adding 1-8% amylose complexing fatty acids (CFA), such as linoleic and oleic acids, on the glass transition temperature (Tg) of cassava starch (CS) with moisture content varying from 5 to 35% (dry basis) was studied. The main relaxation temperature (Tα), associated with the glass transition temperature of the samples (Tg), was determined by dynamic-mechanical-thermal analysis. The plasticizing behavior of water in the blends was evidenced by a decrease of Tα values with moisture content. The effect of CFA on CS was found to be a function of moisture content. At low moisture (<11%) it caused an anti-plasticization effect, while at higher moisture contents it produced plasticization. The anti-plasticizing effect of CFA on CS was attributed to amylose-lipid complex formation.


Assuntos
Ácidos Graxos/química , Manihot/química , Plásticos/química , Amido/química , Adsorção , Fenômenos Mecânicos , Transição de Fase , Temperatura de Transição
8.
J Tissue Eng Regen Med ; 6(4): 272-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21548137

RESUMO

Cartilage is a specialized tissue represented by a group of particular cells (the chondrocytes) and an abundant extracellular matrix. Because of the reduced regenerative capacity of this tissue, cartilage injuries are often difficult to handle. Nowadays tissue engineering has emerged as a very promising discipline, and biodegradable polymeric scaffolds are widely used as tissue supports. In cartilage injuries, the use of autologous chondrocyte implantation from non-affected cartilage zones has emerged as a very interesting technique, where chondrocytes are expanded in order to obtain a greater number of cells. Nevertheless, it has been reported that chondrocytes in bidimensional cultures suffer a dedifferentiation process. The present study sought, in the first place, to standardize a novel protocol in order to obtain primary cultures of chondrocytes from newborn rabbit hyaline cartilage from the xiphoid process. Second, the potential of porous three-dimensional (3D) biodegradable polymeric matrices as support materials for chondrocytes was evaluated: a novel poly(ε-caprolactone)-poly(p-dioxanone) (PCL-PPDX) blend in a 90:10 w:w ratio and poly(ε-caprolactone) (PCL). After achieving the standardization, a typical round-shaped chondrocyte morphology and the expression of collagen type II and aggrecan, evaluated by RT-PCR, were observed. Second-passage chondrocytes adhered effectively to these scaffolds, although cell growth at 7 days in culture was significantly less in the PCL-PPDX blend. After 3 weeks of culture on PCL-PPDX or PCL, the cells expressed collagen type II. The present study demonstrates the potential, unknown until now, of PCL-PPDX blend scaffolds in the field of cartilage tissue engineering.


Assuntos
Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Dioxanos/farmacologia , Teste de Materiais , Poliésteres/farmacologia , Polímeros/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Cartilagem/citologia , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Separação Celular , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Porosidade/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
9.
J Colloid Interface Sci ; 357(1): 147-56, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21333304

RESUMO

Two new water soluble dendronized polymers (PLn) from acrylate Behera amine monomer of different molecular weights were successfully synthesized. The polymers were characterized by FTIR, NMR, GPC and DLS. Both GPC and DLS results indicated that these PLn have a remarkable tendency to form aggregates in solution that lead to apparent molecular weights that are much higher than their theoretical values, as well as large diameters in solution. However, the addition of any PLn to water did not cause any increase in viscosity up to concentrations of 1000 ppm. The possible interactions of PLn with the cationic surfactant CTAT were explored by solution rheometry. A synergistic viscosity enhancement was found by adding small amounts of dendronized PLn polymers to a CTAT solution composed of entangled worm-like micelles. The highest association tendency with CTAT was found for PL1 at the maximum polymer concentration before phase separation (i.e., 100 ppm). The solution viscosity at low-shear rates could be increased by an order of magnitude upon addition of 100 ppm of PL1 to a 20mM CTAT solution. For this mixture, the fluid obtained was highly structured and exhibited only shear thinning behavior from the smallest shear rates employed. These PL1/CTAT mixtures exhibited an improved elastic character (as determined by dynamic rheometry) that translated in a much longer value of the cross-over relaxation time and a pronounced thixotropic behavior which are indicative of a strong intermolecular interaction. In the case of the polymer with a higher theoretical molecular weight, PL2, its association with CTAT leads to an extraordinary doubling of solution viscosity with just 0.25 ppm polymer addition to a 20mM CTAT solution. However, such synergistic viscosity enhancement saturated at rather low concentrations (25 ppm) indicating an apparent lower solubility as compared to PL1, a fact that may be related to its higher molecular weight.

10.
J Colloid Interface Sci ; 336(2): 462-9, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19427644

RESUMO

In this work, we report synthesis and rheology of an interesting structured fluid based on the self-assembly of amphiphilic dendrons and wormlike micelles. Two amphiphilic dendrons were synthesized by the combination of aliphatic chains and polar dendritic heads. They showed different degrees of hydrophobicity and formed micelles in aqueous solution at critical micelle concentrations (CMC) of 25 and 125 ppm. The dendrons were soluble in water up to a concentration of approximately 1200 ppm, and produced no measurable increase in the viscosity of the solvent. The rheology of solutions of mixtures of each dendron with cetyltrimethylammonium p-toluenesulfonate (CTAT, a cationic surfactant) was characterized in simple shear flow. In the concentration range in which CTAT forms semidilute solutions of wormlike micelles, dendron addition produced a substantial synergy in zero-shear rate viscosity. Parallel-plate oscillatory shear measurements demonstrated that the CTAT/dendron mixtures are significantly more elastic than CTAT solutions. The viscosity synergy occurs at dendron concentrations lower than their CMC, and it is stronger for the more hydrophobic dendron. This suggests that the interactions between dendrons and wormlike micelles are basically hydrophobic, which implies attachment of dendron micelles to wormlike CTAT micelles in a manner similar to micellization of surfactants on polyelectrolytes.

11.
J Colloid Interface Sci ; 333(1): 152-63, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19246047

RESUMO

Hydrophobically modified polyacrylamides (HMPAM) were synthesized by aqueous micellar copolymerization using poly(propylene glycol) monomethacrylate, PPGMA, as hydrophobic monomer and sodium dodecyl sulfate, SDS, as surfactant. The hydrophobic monomer to surfactant ratio was varied during micellar synthesis to obtain different hydrophobic block lengths. It was found that the rheology of HMPAM/SDS solutions depends both on the ratio of PPGMA to surfactant and on the concentration of surfactant used in the micellar copolymerization. Also, the rheological behavior of the copolymer solutions was studied as a function of SDS addition and temperature. In the presence of SDS, an increase in zero-shear viscosity was observed that depended on polymer and surfactant concentration. At the highest SDS concentration, the copolymer did not reach the viscosity value exhibited by the solution without surfactant. In the presence of surfactant, HMPAM solutions exhibited a small thermo-thickening behavior when the temperature increases from 25 to 50 degrees C. Our rheological results evidence that the properties of HMPAM aqueous solution as a function of temperature, are a consequence of the rheological response of both components within the copolymer chain, i.e., hydrophilic (acrylamide) and lateral lower critical solution temperature (LCST) sequences (PPO).


Assuntos
Resinas Acrílicas/síntese química , Polímeros/química , Propilenoglicóis/química , Resinas Acrílicas/química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Tamanho da Partícula , Reologia , Dodecilsulfato de Sódio/química , Propriedades de Superfície , Tensoativos/química , Temperatura
12.
J Colloid Interface Sci ; 326(1): 254-60, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18684464

RESUMO

Interactions between a high molecular weight poly(ethylene oxide) (PEO) and the anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in aqueous solutions were investigated by shear and extensional rheometry. Results for mixtures between PEO and sodium dodecyl sulfate (SDS) are also presented for comparison purposes. Addition of anionic surfactants to PEO solutions above the critical aggregation concentration (CAC), at which micellar aggregates attach to the polymer chain, results in an increase in shear viscosity due to PEO coil expansion, and a strengthening of interchain interactions. In extensional flows, these interactions result in a decrease of the critical shear rate for the onset of the characteristic extension thickening of the PEO solutions that is due to transient entanglements of polymer molecules. The relaxation times associated with these transient entanglements are not directly proportional to the shear viscosity of the solutions, but rather vary more rapidly with surfactant concentration. In the presence of an electrolyte, coil contraction results in lower shear viscosities and a decrease in the extension thickening effects at surfactant concentrations just beyond the CAC. The relaxation times associated with transient entanglement reach a minimum at the same surfactant concentration as the shear viscosity, which indicates that coil contraction is responsible for the observed effects in both types of flow. However, the increase in extensional-flow entanglement relaxation times is much more abrupt than the decrease in shear viscosity. All these results point to a greater sensitivity of extensional flows on the molecular conformation of PEO/surfactant complexes.

13.
J Colloid Interface Sci ; 326(1): 221-6, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18674777

RESUMO

The rheology of solutions of wormlike micelles formed by oppositely charged surfactant mixtures (cationic cetyl trimethylammonium p-toluene sulfonate, CTAT, and anionic sodium dodecyl sulfate, SDS), in the dilute and semi-dilute regimes, were studied under simple shear and porous media flows. Aqueous mixtures of CTAT and SDS formed homogeneous solutions for SDS/CTAT molar ratios below 0.12. Solutions of mixtures exhibited a strong synergistic effect in shear viscosity, especially in the semi-dilute regime with respect to wormlike micelles, reaching a four order of magnitude increase in the zero-shear rate viscosity for solutions with 20 mM CTAT. Oscillatory shear results demonstrated that the microstructure of CTAT wormlike micelles is sensitive to SDS addition. The cross-over relaxation times of wormlike micelles of 20 mM CTAT solutions increased by three orders of magnitude with the addition of up to 2 mM of SDS, and the solutions became increasingly elastic. The shear thickening process observed in shear rheology became more pronounced in porous media flow due to the formation of stronger cooperative structures induced by the extensional component of the flow.

14.
J Biomed Mater Res A ; 87(2): 405-17, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18186046

RESUMO

An evaluation of cell proliferation and adhesion on biocompatible film supports was performed. A series of films were compression molded from commercially available poly (L-lactide), PLLA, and poly(epsilon-caprolactone), PCL, and from their melt mixed blends (PLLA/PCL blends). These were compared with compression molded films of PLLA-b-PCL model diblock copolymers. The samples were analyzed by differential scanning calorimetry (DSC), contact angle measurements, and scanning force microscopy (SFM). Cell adhesion and proliferation were performed with monkey derived fibroblasts (VERO) and with osteoblastic cells obtained either enzymatically or from explants cultures of Sprague-Dawley rat calvaria. Migration studies were performed with bone explants of the same origin. The results obtained indicate that although all materials tested were suitable for the support of cellular growth, a PLLA-b-PCL diblock copolymer sample with 93% PLLA was significantly more efficient. This sample exhibited a unique surface morphology with long range ordered domains (of the order of 2-3 mum) of edge-on PLLA lamellae that can promote "cell contact guidance." The influence of other factors such as chemical composition, degree of crystallinity, and surface roughness did not play a major role in determining cell preference toward a specific surface for the materials employed in this work.


Assuntos
Poliésteres/química , Animais , Materiais Biocompatíveis/química , Varredura Diferencial de Calorimetria , Adesão Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Chlorocebus aethiops , Teste de Materiais , Microscopia de Força Atômica , Osteoblastos/citologia , Osteoblastos/fisiologia , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Células Vero
15.
J Colloid Interface Sci ; 307(1): 221-8, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17118386

RESUMO

The influence of ionic environment on the rheological properties of aqueous cetyltrimethylammonium p-toluene sulfonate (CTAT) solutions has been studied under three different flow fields: simple shear, opposed-jets flow and porous media flow. Emphasis was placed in the experiments on a range of CTAT concentration in which wormlike micelles were formed. It is known that these solutions exhibit shear thickening in the semi-dilute regime, which has been explained in terms of the formation of shear-induced, cooperative structures involving wormlike micelles. In simple shear flow, the zero shear viscosity exhibits first an increase with salt addition followed by a decrease, while the critical shear rate for shear thickening increases sharply at low salt contents and tends to saturate at relatively high ionic strengths. The results are explained in terms of a competition between micellar growth induced by salt addition and changes in micellar flexibility caused by ionic screening effects. Dynamic light scattering results indicate that micelles grow rapidly upon salt addition but eventually achieve a constant size under static conditions. These observations suggest that the wormlike micelles continuously grow with salt addition, but, as they become more flexible due to electrostatic screening, the wormlike coils tend to adopt a more compact conformation. The trends observed in the apparent viscosities measured in porous media flows seem to confirm these hypotheses-but viscosity increases in the shear thickening region-and are magnified by micelle deformation induced by the elongational nature of the local flow in the pores. In opposed-jets flow, the solutions have a behavior that is close to Newtonian, which suggests that the range of strain rates employed makes the flow strong enough to destroy or prevent the formation of cooperative micellar structures.

16.
Interciencia ; Interciencia;30(7): 388-394, jul. 2005. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: lil-432071

RESUMO

En este trabajo fueron estudiados los productos obtenidos por la funcionalización de copolímeros de etileno-alfa-olefina, que poseían varios comonómeros (1-buteno, 1-hexeno), con diferentes agentes (dietilmaleato, anhídrido maléico, monoitaconato de decilo y acrilamida). Todas las funcionalizaciones fueron realizadas en disolución. La introducción de los agentes funcionalizantes se confirmó por el uso de la espectroscopia infrarroja con transformada de Fourier (FTIR). El fraccionamiento térmico de los productos se realizó utilizando la calorimetría diferencial de barrido (DSC) y la aplicación de la técnica de autonucleación y recocidos sucesivos (SSA). La morfología y los detalles lamelares fueron investigados por observación en el microscopio electrónico de transmisión (TEM) de muestras teñidas por clorosulfonación. Los estudios de fraccionamiento revelaron diferencias entre los productos en cuanto a su comportamiento de fusión. En algunos productos la cantidad de las reacciones colaterales fue mayor que en otros. Los estudios microscópicos confirmaron que la introducción de agentes funcionalizantes dio lugar a la presencia de espesores lamelares más delgados


Assuntos
Polietilenos/química , Técnicas de Química Analítica/métodos , Acrilamida/química , Anidridos Maleicos/química , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Transmissão , Venezuela
17.
Faraday Discuss ; 128: 231-52; discussion 321-39, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15658776

RESUMO

The crystallization kinetics of each constituent of poly(p-dioxanone)-b-poly(epsilon-caprolactone) diblock copolymers (PPDX-b-PCL) has been determined in a wide composition range by differential scanning calorimetry and compared to that of the equivalent homopolymers. Spherulitic growth rates were also measured by polarized optical microscopy while atomic force microscopy was employed to reveal the morphology of one selected diblock copolymer. It was found that crystallization drives structure formation and both components form lamellae within mixed spherulitic superstructures. The overall isothermal crystallization kinetics of the PPDX block at high temperatures, where the PCL is molten, was determined by accelerating the kinetics through a previous self-nucleation procedure. The application of the Lauritzen and Hoffman theory to overall growth rate data yielded successful results for PPDX and the diblock copolymers. The theory was applied to isothermal overall crystallization of previously self-nucleated PPDX (where growth should be the dominant factor if self-nucleation was effective) and the energetic parameters obtained were perfectly matched with those obtained from spherulitic growth rate data of neat PPDX. A quantitative estimate of the increase in the energy barrier for crystallization of the PPDX block, caused by the covalently bonded molten PCL as compared to homo-PPDX, was thus determined. This energy increase can dramatically reduce the crystallization rate of the PPDX block as compared to homo-PPDX. In the case of the PCL block, both the crystallization kinetics and the self-nucleation results indicate that the PPDX is able to nucleate the PCL within the copolymers and heterogeneous nucleation is always present regardless of composition. Finally, preliminary results on hydrolytic degradation showed that the presence of relatively small amounts of PCL within PPDX-b-PCL copolymers substantially retards hydrolytic degradation of the material in comparison to homo-PPDX. This increased resistance to hydrolysis is a complex function of composition and its knowledge may allow future prediction of the lifetime of the material for biomedical applications.

18.
Biomacromolecules ; 5(2): 358-70, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15002995

RESUMO

We have studied the hydrolytic degradation of high molecular weight poly(p-dioxanone), PPDX, sutures. The samples were degraded either in distilled water or in a phosphate buffer at 37 degrees C, and the starting viscosity-average molecular weight was 130 kg/mol. The hydrolytic degradation of PPDX occurs in an approximate two stage process where the amorphous regions of the sample are attacked faster than the crystalline regions of the sample. The changes experienced by the samples as degradation proceeded were successfully monitored by viscosimetry, differential scanning calorimetry (DSC), weight loss, pH changes, and scanning electron microscopy (SEM). Polarized optical microscopy (POM) observations performed on PPDX films revealed that PPDX crystallizes in spherulites whose detailed morphology depends on the supercooling employed during isothermal crystallization. Changes in the spherulitic morphology as molecular weight is reduced are only pronounced when the molecular weight is equal or lower than 8 kg/mol. The dependence of lamellar thickness as a function of isothermal crystallization temperature was examined by atomic force microscopy (AFM) in thin films of PPDX together with melting point data obtained by DSC. Through the use of the Thomson-Gibbs equation, we obtained a value of 166 erg/cm2 for the fold surface free energy of PPDX. This value is in the same range as those obtained previously for similar linear polyesters. The lamellar thickness, as well as the melting point, was found to have a small decreasing dependence with the molecular weight of the samples.


Assuntos
Dioxanos/química , Polímeros/química , Materiais Biocompatíveis/química , Varredura Diferencial de Calorimetria , Cristalização , Hidrólise , Microscopia de Força Atômica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA