Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Trends Mol Med ; 20(9): 519-28, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25164066

RESUMO

Therapies that selectively target cancer cells for death have been the center of intense research recently. One potential therapy may involve apoptin proteins, which are able to induce apoptosis in cancer cells leaving normal cells unharmed. Apoptin was originally discovered in the Chicken anemia virus (CAV); however, human gyroviruses (HGyV) have recently been found that also harbor apoptin-like proteins. Although the cancer cell specific activity of these apoptins appears to be well conserved, the precise functions and mechanisms of action are yet to be fully elucidated. Strategies for both delivering apoptin to treat tumors and disseminating the protein inside the tumor body are now being developed, and have shown promise in preclinical animal studies.


Assuntos
Antineoplásicos/farmacologia , Proteínas do Capsídeo/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Proteínas do Capsídeo/fisiologia , Morte Celular/efeitos dos fármacos , Vírus da Anemia da Galinha/química , Gyrovirus/química , Humanos , Proteínas Virais/isolamento & purificação , Proteínas Virais/farmacologia
2.
Med Sci Monit ; 15(2)Feb. 2009. ilus, tab, graf
Artigo em Inglês | CUMED | ID: cum-39786

RESUMO

BACKGROUND: Bone marrow-derived stem cell transplantation is a potentially viable therapeutic option for the treatment of neurodegenerative disease. MATERIAL/METHODS: We have isolated bone marrow stem cells by standard method. We then evaluated the survival of rats' bone marrow mononuclear cells implanted in rats' brain. The cells were extracted from rats' femurs, and marked for monitoring purposes by adenoviral transduction with Green Fluorescent Protein (GFP). Labeled cells were implanted within the area of rats' striatum lesions that were induced a month earlier employing quinolinic acid-based method. The implants were phenotyped by monitoring CD34; CD38; CD45 and CD90 expression. Bone marrow stromal cells were extracted from rats' femurs and cultivated until monolayer bone marrow stromal cells were obtained. The ability of bone marrow stromal cells to express NGF and GDNF was evaluated by RT-PCR. RESULTS: Implanted cells survived for at least one month after transplantation and dispersed from the area of injection towards corpus callosum and brain cortex. Interestingly, passaged rat bone marrow stromal cells expressed NGF and GDNF mRNA. CONCLUSIONS: The bone marrow cells could be successfully transplanted to the brain either for the purpose of trans-differentiation, or for the expression of desired growth factors(AU)


Assuntos
Animais , Masculino , Células da Medula Óssea/citologia , Encéfalo/patologia , Transplante de Tecido Encefálico , Sobrevivência de Enxerto , Neurônios/metabolismo , Transplante de Células-Tronco
3.
Med Sci Monit ; 15(2): BR47-54, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19179961

RESUMO

BACKGROUND: Bone marrow-derived stem cell transplantation is a potentially viable therapeutic option for the treatment of neurodegenerative disease. MATERIAL/METHODS: We have isolated bone marrow stem cells by standard method. We then evaluated the survival of rats' bone marrow mononuclear cells implanted in rats' brain. The cells were extracted from rats' femurs, and marked for monitoring purposes by adenoviral transduction with Green Fluorescent Protein (GFP). Labeled cells were implanted within the area of rats' striatum lesions that were induced a month earlier employing quinolinic acid-based method. The implants were phenotyped by monitoring CD34; CD38; CD45 and CD90 expression. Bone marrow stromal cells were extracted from rats' femurs and cultivated until monolayer bone marrow stromal cells were obtained. The ability of bone marrow stromal cells to express NGF and GDNF was evaluated by RT-PCR. RESULTS: Implanted cells survived for at least one month after transplantation and dispersed from the area of injection towards corpus callosum and brain cortex. Interestingly, passaged rat bone marrow stromal cells expressed NGF and GDNF mRNA. CONCLUSIONS: The bone marrow cells could be successfully transplanted to the brain either for the purpose of trans-differentiation, or for the expression of desired growth factors.


Assuntos
Células da Medula Óssea/citologia , Transplante de Tecido Encefálico , Encéfalo/patologia , Sobrevivência de Enxerto , Neurônios/metabolismo , Transplante de Células-Tronco , Adenoviridae , Animais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Leucócitos Mononucleares/virologia , Masculino , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Ácido Quinolínico , Ratos , Ratos Sprague-Dawley , Coloração e Rotulagem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA