Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35295925

RESUMO

The genus Bulbophyllum is of scientific interest due to the phytochemical components and diverse biological activities found across species of the genus. Most Bulbophyllum species are epiphytic and located in habitats that range from subtropical dry forests to wet montane cloud forests. In many cultures, the genus Bulbophyllum has a religious, protective, ornamenting, cosmetic, and medicinal role. Detailed investigations into the molecular pharmacological mechanisms and numerous biological effects of Bulbophyllum spp. remain ambiguous. The review focuses on an in-depth discussion of studies containing data on phytochemistry and preclinical pharmacology. Thus, the purpose of this review was to summarize the therapeutic potential of Bulbophyllum spp. biocompounds. Data were collected from several scientific databases such as PubMed and ScienceDirect, other professional websites, and traditional medicine books to obtain the necessary information. Evidence from pharmacological studies has shown that various phytoconstituents in some Bulbophyllum species have different biological health-promoting activities such as antimicrobial, antifungal, antioxidant, anti-inflammatory, anticancer, and neuroprotective. No toxicological effects have been reported to date. Future clinical trials are needed for the clinical confirmation of biological activities proven in preclinical studies. Although orchid species are cultivated for ornamental purposes and have a wide traditional use, the novelty of this review is a summary of biological actions from preclinical studies, thus supporting ethnopharmacological data.

2.
Oxid Med Cell Longev ; 2022: 8442734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069979

RESUMO

The genus Hyssopus is widespread in central Asia, East Mediterranean, and Mongolian areas. It has six main species which are used as herbal remedies, such as Hyssopus officinalis which is used as a condiment and flavoring agent in food industry. The other five species are H. ambiguus, H. cuspidatus, H. latilabiatus, H. macranthus, and H. seravschanicus. Its species are used in the treatment of various ailments such as cold, cough, loss of appetite, fungal infection, and spasmodic condition. Its constituents especially essential oils are popularly used as an additive in beverages, foods, and cosmetics. The volatile constituents are used for aroma in the food industry, cosmetic industry, and household products. The important active constituents in its essential oils are ß-pinene, pinocamphone, isopinocamphone, and other terpenoids. Hyssopus genus is also bundled with other secondary metabolites including flavonoids luteolin, quercetin, apigenin, and their glucosides, as well as phenolic compounds including ferulic, p-hydroxy-benzoic acid, protocatechuic acid, chlorogenic, and caffeic acid. Combinedly, the extracts of Hyssopus are reported to have potential antiviral and antifungal activities proven using in vitro studies, whereas in vivo investigations have reported the crucial role of Hyssopus extracts in plasma membrane relaxation, cytotoxic, and sedative effects. This plant is believed to be relatively safe at levels commonly used in foods; nevertheless, more studies are needed to determine the safety profile.


Assuntos
Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Hyssopus/química , Óleos Voláteis/química , Compostos Fitoquímicos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Humanos , Compostos Fitoquímicos/farmacologia
3.
Antonie Van Leeuwenhoek ; 111(5): 761-781, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29605896

RESUMO

Streptomyces species are a wide and diverse source of many therapeutic agents (antimicrobials, antineoplastic and antioxidants, to name a few) and represent an important source of compounds with potential applications in medicine. The effect of nitrogen, phosphate and carbon on the production of secondary metabolites has long been observed, but it was not until recently that the molecular mechanisms on which these effects rely were ascertained. In addition to the specific macronutrient regulatory mechanisms, there is a complex network of interactions between these mechanisms influencing secondary metabolism. In this article, we review the recent advances in our understanding of the molecular mechanisms of regulation exerted by nitrogen, phosphate and carbon sources, as well as the effects of their interconnections, on the synthesis of secondary metabolites by members of the genus Streptomyces.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Fosfatos/metabolismo , Metabolismo Secundário/fisiologia , Streptomyces/metabolismo , Antibacterianos/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Receptor Cross-Talk , Metabolismo Secundário/genética
4.
Appl Biochem Biotechnol ; 175(6): 3207-17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25619626

RESUMO

In Streptomyces, carbon utilization is of significant importance for the expression of genes involved in morphological differentiation and antibiotic production. Glucose is mainly transported by GlcP, a membrane protein encoded by glcp. In Streptomyces coelicolor, this protein is encoded by sco5578. However, there is little information about the physiology of the GlcP promoter in Streptomyces. The aim of the present work was to clone and perform a functional analysis of the sp7066 promoter (ortholog of sco5578) from Streptomyces peucetius var. caesius. Hydrophobicity and cellular location analysis of the putative amino acid sequence of the cloned gene predicted SP7066 would be a membrane protein with a topology of six plus six transmembrane segments interrupted by a large cytoplasmic loop. In silico analysis of the upstream region of the sp7066 transcription initiation site predicted the sequences 5'-AGGAATAGT-3' and 5'-TTGACT-3' for regions -10 and -35 of sp7066 promoter. To reflect sp7066 expression, the promoter sequence was amplified, subcloned, and fused to the egfp reporter gene. Immunoblot analysis revealed that D-glucose and its analog 2-deoxyglucose were able to induce sp7066 expression. This effect was not modified by the presence of equimolar concentrations of D-galactose or N-acetylglucosamine. No expression of egfp was detected with the use of other carbon sources such as L-arabinose, D-fructose, and glycerol. Based on these analyses, we conclude that D-glucose is a preferred carbon source in S. peucetius var. caesius and that the sp7066 expression product, a putative non-PTS glucose permease, likely is a H+/symporter, localized to the membrane, and shows a strong specificity for D-glucose for inducing expression.


Assuntos
Proteínas de Bactérias/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Regiões Promotoras Genéticas , Streptomyces/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Glucose/metabolismo , Dados de Sequência Molecular , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA